AUSTRONESIAN COLONISATION OF THE MARIANA ISLANDS:
THE PALAEOENVIRONMENTAL EVIDENCE

J. Stephen Athens¹, Michael F. Dega², Jerome V. Ward³

¹International Archaeological Research Institute, Inc., Honolulu, HI, USA
²Scientific Consultant Services, Honolulu, HI, USA
³Pacific Palaeontology, Sweet Briar, VA, USA

ABSTRACT

Palaeoenvironmental records from a Guam coastal wetland and a Saipan sinkhole document the Holocene environmental history of the Marianas archipelago of the western Pacific. Disturbance indicators, including charcoal particles and pollen of various plant taxa, attest to the arrival of human settlers in the Mariana Islands by the middle fifth millennium BP, one thousand years earlier than suggested by accepted archaeological data. This finding, corroborating other records in the Mariana Islands and mirroring similar records obtained from Palau to the south, argues for a significantly earlier date for initial expansion of Austronesians out of island Southeast Asia and into the Pacific.

Understanding the Austronesian expansion is important because it represents one of the world’s largest population movements of the last 6,000 years (Diamond 1998:336). This expansion, named after the Austronesian language family, describes an ethnic and geographic distribution of closely related languages whose speakers traditionally shared certain broad cultural traits throughout an enormous region that includes Taiwan, Malaysia, the Philippines, Indonesia, inland southern Vietnam, Madagascar, and much of the tropical and subtropical Pacific stretching to Hawaii, New Zealand and Easter Island (Bellwood 1991:90).

That there was an Austronesian expansion is accepted by almost all investigators. However, there remains controversy as to whether the Austronesian homeland was centered in island Southeast Asia (Oppenheimer and Richards 2001), whether Taiwan was the homeland from which expansion occurred (Bellwood 1997), or whether the historical cross currents of linguistic, population, genetic, and ethnic factors were much more complicated than the dichotomous models usually propounded for at least the eastward expansion of island Southeast Asian Austronesians into Oceania (Terrell et al. 2001).

Whatever the homeland or origins of Austronesian speakers, it seems clear that tropical horticulturalists began to emerge in island Southeast Asia during the middle Holocene, and that these peoples were likely in some sense Austronesians. Firm archaeological dates for when this happened are still elusive, but it seems to have occurred by about 4500 years ago (see Kirch 2000:91 for Philippine dates; also Bellwood 1997). Nevertheless, the possible precocious role of New Guinea and other nearby large Melanesian islands in the development of tropical horticulture and domestication cannot be ignored as a potentially significant factor in this process (Denham et al. 2003, see also Swadling 1997). Terrell (2002) has cogently argued just this point citing various lines of evidence.

Whatever the origin (or multiple origins) of Pacific agriculture, the expansion of Austronesian horticulturalists out of island Southeast Asia and into the Pacific is thought to be signaled by the highly diagnostic Lapita pottery, first appearing about 3500 years ago in the Bismark Archipelago (Kirch 2000:88). Close variants of this pottery are known from the Philippines and are likely about the same age (see Solheim 1968; Van Heekeren 1972; Spoehr 1973; Bellwood 1979:282; Tinell 1989; Aoyagi et al. 1993; Kirch 2000:91, 171). From the Bismark Archipelago the Austronesians spread rapidly to the east where they eventually completed one of the world’s great exploration feats by finding and colonising the remote Micronesian, Melanesian, and Polynesian archipelagos and other islands of the Western, Central, and South Pacific.¹
In this paper we wish to consider the implications of our recent palaeoenvironmental investigations for Austronesian colonisation of the previously uninhabited Mariana archipelago in the western Pacific (Figure 1). Our results suggest significantly earlier colonisation than has heretofore been accepted for human settlement. We believe this not only has interesting implications for the archaeology of the Mariana Islands, but it broadens our understanding of the process of Austronesian expansion, including the role of the Lapita phenomenon as the engine driving voyaging and settlement into the remote Pacific.

The methodology of palaeoenvironmental investigations and the use of these studies for archaeological inferences have been dealt with elsewhere (Athens and Ward 2004a). Suffice it to say that the great utility of palaeoenvironmental investigations for archaeological studies has been demonstrated beyond question in the Pacific and other areas of the world, though we recognise that limitations exist. Unfortunately, practitioners sometimes have found themselves doing work and using data beyond the limits of their abilities, evoking occasional criticisms of the methodology that are clearly misplaced. Hopefully that will not be a concern in the studies we are about to present.

We will begin our discussion with a very brief synopsis of archaeological information relating to the early settlement of the Mariana Islands. This will be followed by a summary of our palaeoenvironmental findings. Finally, we will return to the topic of the implication of these findings for the process of Austronesian expansion and the resulting expectations for the archaeological record in the Mariana Islands.

EARLY SETTLEMENT OF THE MARIANA ISLANDS

Recent archaeological investigations support Specht’s (1957) original radiocarbon determination that the Mariana Islands were settled about 3500 years ago (Moore et al. 1992; Rainbird 1994:298; Butler 1994, 1995; Hunter-Anderson and Butler 1995; Russell 1998). The earliest reasonably secure radiocarbon dates are from the Achugao and Chalan Piao sites on Saipan, and Unai Chulu on Tinian. Linguistic and physical anthropological data and material-culture similarities indicate that these early migrants were originally from insular southeast Asia, most likely the Philippines, and that they were the ancestors of the present day Chamorro people (see Craib 1993:131, 1996; Butler 1994:33; Rainbird 1994:298).

Figure 1: The Mariana Islands in western Micronesia, with Guam and Saipan.
The early period of human occupation of the Mariana Islands is designated the Early Pre-Latte Period (c. 1500 BC to 500 BC; see Hunter-Anderson and Butler 1995:26; also Moore 2002 for an up-to-date discussion of ceramic periods with finer divisions). Pre-Latte ceramic assemblages are characterised by calcareous sand temper, red slip, well-polished or burnished exterior surfaces, and a wide variety of vessel forms, including small jars with everted or constricted rims and shallow bowls, some with carinated shoulders. Rims are usually unthickened or narrow. Sherds decorated with complex designs of lime-filled incisions and dentate stamping are a particularly distinctive characteristic of this period. Butler (1994) distinguishes two styles: Achiugao and San Roque Incised. The Achiugao style consists of 'complex, predominantly rectilinear incised patterns with the zones between the major elements packed with tiny, delicate punctations;' the San Roque Incised style consists of 'bands of curvilinear garlands made by linking incised arches (half circles) with small stamped circles or large punctuations placed at the junctions of the arch segments' (Butler 1994:27). The San Roque type may have persisted for a longer time than the Achiugao type. A later bold incised and stamped style (such as predominates at the Chalan Pago site on Saipan), which has been reported from many early sites, dates to the later part of the Early Pre-Latte period and extends into the Intermediate Pre-Latte period.

According to Butler (1994:32), the fine dentate technique is reminiscent of the famous Lapita ware of Melanesia. Butler (1994) and Craib (1993:131), however, caution that the two pottery types are not specifically related, though they believe that the Mariana ware may ultimately share the same or similar Austronesian heritage from island Southeast Asia (see also Kirch (2000:171)).

PALAEOENVIRONMENTAL EVIDENCE

The relevant palaeoenvironmental findings primarily derive from two recent investigations. One concerns a 28 m long core recovered from the Laguas wetland on Guam, designated here as the IARII Laguas core to distinguish it from the MARS Laguas core. The other is a study of sedimentary deposits in a large sinkhole on the Kagman Peninsula of Saipan. Other relevant palaeoenvironmental studies in the Mariana Islands are summarised in Table 1. In regard to these other studies, both the Pago core from Guam (Ward 1994) and the recent Lake Susupe core from Saipan (Athens and Ward 2004b) produced results similar to the findings presented here. Unfortunately, however, the data from these two cores have limitations, including too few radiocarbon dates for the Pago core, and the apparent lack of fine depositional resolution in the critical Layer III of the Lake Susupe core. The other cores (Tipalao/Orote, MARS Laguas, and Lake Hagoi) are not directly relevant for consideration of the question of initial Austronesian colonisation.

The Laguna Core, Guam

The relevant points for the present discussion concerning the IARII Laguas core may be summarised as follows (for details see Athens and Ward 1999, 2004a).

1. The core location is a small coastal wetland on the west side of Guam in the southern geological province of the island. It is near the mouth of a small drainage basin that descends from the dissected and weathered volcanic uplands (Figure 2).

2. The chronology of the Laguas core is defined by 10 radiocarbon determinations, all of which are in proper chrono-stratigraphic order (Figure 3). Sedimentary deposition has been continuous at this location for the past 9300 years.

3. A total of 45 pollen samples were processed; all sample intervals yielded abundant pollen.

4. From 9300 years to about 4300 years cal. BP the pollen record indicates an entirely forested landscape. Disturbance indicators – savanna and grassland pollen types – are virtually absent from the record during this period. At about 4300 cal. BP they start to slowly increase. The absence of microscopic charcoal particles prior to 4300 cal. BP indicates that there were no natural fires on Guam for at least the preceding 5000 years (Figure 4).

5. At 4300 cal. BP charcoal particles first begin to appear in the Laguas record, and they remain in the record thereafter. At first they are found in very low concentrations, but begin increasing in quantity by c.3550 cal. BP. It is also at 3550 cal. BP that grass and fern pollen begin increasing significantly, though there are signs of increase as early as 3900 cal. BP (Figure 4).

It is our contention that there is no other reasonable explanation for the advent of charcoal particles on the landscape beginning at 4300 cal. BP other than the arrival of humans. A natural origin on Guam does not make sense because this implies severe drought of a type that had not occurred during the preceding 5000 years. Had such a drought occurred, leading to the natural ignition of vegetation, it should have been accompanied by a simultaneous and significant increase in pollen and spores of types indicative of aridity and disturbance to natural habitats. This is clearly not the case in the IARII Laguas core, where there is a significant lag in the appearance of disturbance indicators (at least 400 to 500 years).

If we continue to play the devils advocate, another potential explanation for the natural appearance of charcoal particles concerns their atmospheric transport from distant sources of natural or anthropogenic fires. With respect to
Table 1: Summary Data from Previous Palaeoenvironmental Cores in the Mariana Islands

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Tipalao/Orote</th>
<th>Pago</th>
<th>Laguas (MARS)</th>
<th>Lake Hagoi</th>
<th>Lake Susupe</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>Guam</td>
<td>Guam</td>
<td>Guam</td>
<td>Tinian</td>
<td>Saipan</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>Depth, m</td>
<td>4.98</td>
<td>33.8</td>
<td>41.8</td>
<td>6.8</td>
<td>6.0</td>
</tr>
<tr>
<td>Date; base of core</td>
<td>7924</td>
<td>10,453</td>
<td>>9100**</td>
<td>>7632**</td>
<td>7820</td>
</tr>
<tr>
<td>No.¹⁴C dates</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>No. Pollen Samples</td>
<td>26</td>
<td>17</td>
<td>14</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>Date; Earliest Charcoal</td>
<td>3561</td>
<td>4857</td>
<td>3602</td>
<td>3444</td>
<td>4860</td>
</tr>
<tr>
<td>Date; Earliest Cocos</td>
<td>4600</td>
<td>4328</td>
<td>>9100**</td>
<td>3289</td>
<td>7821</td>
</tr>
<tr>
<td>Date; Earliest Areca (betel)</td>
<td>5628</td>
<td>4857</td>
<td>9080</td>
<td>-</td>
<td>4168</td>
</tr>
<tr>
<td>Date; Earliest significant grass</td>
<td>1399</td>
<td>3222</td>
<td>2225</td>
<td>3289</td>
<td>4168</td>
</tr>
<tr>
<td>Date; Earliest significant Gletchenia</td>
<td>-</td>
<td>3222</td>
<td>2761</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Date; Earliest significant Lycopodium</td>
<td>-</td>
<td>4857</td>
<td>2761</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Date; Earliest significant decline of Pandanus</td>
<td>2145</td>
<td>4328</td>
<td>1957</td>
<td>1448</td>
<td>2148</td>
</tr>
<tr>
<td>Date; Earliest significant decline in forest types</td>
<td>2450</td>
<td>4857-4328</td>
<td>2225</td>
<td>1448</td>
<td>1797</td>
</tr>
</tbody>
</table>

* Dates are based on age/depth interpolations derived from calibrated radiocarbon determinations.

** Dates extrapolated below the lowest radiocarbon determination cannot be regarded as reliable without further radiocarbon determinations; dates below this depth, therefore, are designated as >xxxx cal. BP, with xxxx indicating the value of the lowest radiocarbon determination.

Figure 2: Map of Guam showing major physiographic divisions (redrafted from Tracey et al. [1964:463] and location of Laguas and other palaeoenvironmental cores).

Figure 3: Depth-age distribution of calibrated radiocarbon determinations (1 sigma range) for Laguas core.
natural fires, this seems implausible simply because it had never happened during the previous 5000 years. As for anthropogenic fires, one argument might be that Austronesians in the Philippines began to undertake a significant amount of burning to clear forests for their gardens, and therefore this could be the source of the early charcoal particles we see in Guam. However, the prevailing winds blow in the opposite direction for this to be considered a reasonable possibility (the prevailing winds blow from the northeast, which would also preclude a natural origin of charcoal from the Philippines or other areas of island southeast Asia).

The final point for considering alternative explanations for the source of charcoal particles in the IARII Laguas record concerns the question as to whether the Laguas results might be somehow aberrant either because of dating error (i.e., that the date of the charcoal is in reality significantly later) or other unknown reasons. That the IARII Laguas record is secure, however, and not somehow misleading for Guam is suggested by similar findings in the Pago core (Ward 1994), another long Holocene record from the interior of southern Guam (location indicated in Figure 1). Although the Pago record suffers from not having the sample resolution of the IARII Laguas record, it clearly supports the notion that a significant change occurred in Guam during the 5th millennium BP. The 10,000 year old Pago record displays an absence of charcoal particles and disturbance indicators until about 4800 cal. BP, after which time their concentrations dramatically increase (see Ward 1994; Athens and Ward 2004a).

In view of these considerations, we suggest that the appearance of charcoal particles in the IARII Laguas core provides a reliable signal documenting the arrival of Austronesians in the Mariana Islands during the mid 5th millennium BP.

The Kagman Sinkhole, Saipan

The sinkhole depression of the Kagman site on Saipan, located on the large Kagman Peninsula on the east side of the island, formed a natural sediment trap. The apparently much higher water table of the area during prehistoric and prehuman times created a wetland inside the sinkhole for much of its history. The earliest of six radiocarbon determinations (see Figure 5) indicate that the accumulation of alluvially/colluvially-deposited clay, silt, and loam sediments along with organic remains originating from inside the sink itself began about 7900 cal. BP. The latest

![Graph of charcoal particle concentrations and pollen concentrations of main savanna pollen indicators for Laguas core.](image-url)
ATHENS, DEGA, WARD: AUSTRONESIAN COLONISATION OF THE MARIANA ISLANDS

determination demonstrates that sediment continued to accumulate in the sink until sometime after about 700 cal. BP. Because the sinkhole in modern times is dry, it is difficult to be certain that sediment accumulation always has been regular, though the depth-age curve suggests no major irregularities (with the exception that the 146-154 cm date appears to be too young – see Dega and Clgehorn 2001 for a complete discussion).

Two different sets of pollen data are available, each prepared by different analysts. One consists of 33 samples (analyst L. S. Cummings), and the other just five samples (analyst: J. V. Ward). Samples of the larger set were processed at regular intervals throughout the sinkhole sediment column, though unfortunately information and counts concerning charcoal particles, as well as identifications to genera and species level of some potentially significant indicator plants, were not provided. The other set includes five samples processed from intervals having interpolated dates between 4122 and 4485 cal. BP. Importantly, these interpolated ages are constrained immediately above and below by radiocarbon determinations of 4129 - 3933 and 4863 - 4653 cal. BP (1 sigma ranges). We therefore feel the chronology of these particular sample intervals have a high degree of reliability. The results of the two pollen sample suites indicate the following:

1. In the full sample suite (Figure 6), a very distinct vegetation change occurs about 4520 cal. BP. It appears that prior to this time the area was characterised by mixed grassland and forest, though afterwards the forest disappears and grasslands predominate. At the point of transition forest ferns almost completely disappear while the disturbance fern, _Lycepodium cernuum_, begins a steep ascent in the pollen curve.

2. In the suite of five samples (Figure 7), dating between 4122 and 4485 cal. BP, all contained charcoal particles. The specific concentrations, from bottom to top, were 1.1, 0.4, 0.5, 0.6, and 1.1 mm²/cc. These values, interestingly, are comparable to those documented in the Lake Susupe core between about 4560 and 4860 cal. BP. Though deeper samples demonstrating the absence of charcoal particles in obviously prehuman times are not available for the Kagman record (charcoal particles were not counted in the larger samples suite), the nearby Lake Susupe core does indicate the absence of charcoal particles before 4860 cal. BP (it is also notable that charcoal particle concentrations increase in this core in the intervals just above 4560 cal. BP, see Athens and Ward 2004b). The charcoal particles in the Kagman samples, therefore, appear to be anthropogenic.

3. In the five sample suite (Figure 7), pollen of taro (_Colocasia esculenta_), an important prehistoric root crop, was present in the 4122 cal. BP interval. _Colocasia_ is not native to the Mariana Islands, would have been introduced by the Austronesian colonists. Unfortunately, it is necessary to be cautious about the association of this pollen – just a single grain – with the date. This is because in the full sample suite a few historically-introduced _Leucaena_ pollen grains were present to a significant depth. Thus, judgment about the significance of the finding of _Colocasia_ pollen should be reserved until further studies confirm its presence on Saipan during the early 5th millennium.

As with the IARIi Laguas record, we feel that the Kagman investigations provide substantive results indicating the high likelihood of Austronesian presence in the Mariana Islands during the mid-5th millennium BP. The significant changes in vegetation that occurred during the latter part of the 5th millennium, coupled with the presence of charcoal particles, provide an undeniable signature for the presence of humans. As to the reliability of the radiocarbon dating evidence, we believe that the proper chrono-stratigraphic order of the two relevant dating samples should be noted, as should the fact that they are from relatively closely spaced intervals (separated by just 70 cm) that bracket the time period of greatest interest. These factors provide a relatively high degree of assurance for the dating. Of course, the coincidence of the Laguas and Kagman results as well as their conformity with the Pago and Lake Susupe results further adds to our confidence in the data.

IMPLICATIONS

The possibility that humans might have been present in the Mariana Islands by the mid-5th millennium BP (800 to 1000 years earlier than previously thought) is probably not as idea that has been seriously considered by most archaeologists working in the region. However, this possibility, clearly indicated by two good palaeoenvironmental records from different islands (and two other supplemental records), now should be regarded as very probable. Our findings have two main implications for understanding both the Austronesian expansion and the archaeology of the Mariana Islands. These are:

1. The Austronesians began their thrust into the Pacific well before the advent of Lapita times in the Bismark Archipelago. They presumably would have arrived in the Mariana Islands from island Southeast Asia, bringing with them tropical root and tree crops. Our reading of the archaeological literature suggests that they must have colonised the Mariana Islands relatively quickly after their appearance in island Southeast Asia. Following landfalls and settlement in the Mariana Islands and the other archipelagos of western Micronesia (we have similar results in Palau [see Athens and Ward 2002] and there is highly suggestive evidence for
Figure 5: Depth-age distribution of calibrated radiocarbon determinations (1 sigma range) for Kagman sinkhole.

Yap [Dodson and Inoth 1999], there was a pause, evidently lasting something on the order of 1,000 years, before Austronesian people again embarked from island southeast Asia, this time on their easterly journey to the Bismarck Archipelago and beyond (see Diamond 1998; Kirch 2000).

2. Incised and dentate stamped pottery is the hallmark of Lapita sites in the Pacific, though the occurrence of this pottery is always at a low frequency. Chronologically, it first appears about 3500 cal. BP in the Bismarck Archipelago (Kirch 2000). We believe it is no coincidence that a similar (but not identical) pottery, also occurring in low frequency, is present in the Mariana Islands at this same time. However, it seems to us highly unlikely that Austronesians arrived in the Mariana Islands from island southeast Asia in the mid-5th millennium BP with this distinctive pottery. It seems to us too unusual for such an elaborate pottery style to be so long-lived. This inference suggests that the earliest sites in the Mariana Islands will not have incised and dentate stamped pottery, but possibly a more generalised and functional pottery, perhaps a red ware or perhaps not. We argue, therefore, that archaeologists must change their concept of what the earliest sites might look like in the Mariana Islands if they are to recognise them. Joyce Bath may have discovered just such a site in Guam, as suggested by her 4419-4150 cal. BP radiocarbon date in pottery-bearing deposits containing a hearth feature (see Bath 1986:41). Unfortunately, however, the deposits associated with the hearth feature that was dated were never adequately described and charcoal from the dating sample was never identified, so we are left wondering what might have been.

NOTES

2. These cores do not have evidence for charcoal particles that is early enough. For Tipalao/Orote this could be due to the wetland’s location on an isolated peninsula away from Guam’s main land mass. For the MARS Laguas core, this may be a result of non-quantitative observations by the analyst (essentially a qualitative judgment was made of the relative abundance of charcoal particles). For the Lake Hagoi core, there was poor or no preservation of pollen and charcoal particles in the sampling intervals immediately below the earliest documented charcoal particles at 3444 cal. BP (good preservation was not obtained again until an interval at 7262 cal. BP).

3. The charcoal sample was derived from ‘... a dense firepit deposit, and thus of cultural origin’ (Bath 1986:41).

ACKNOWLEDGMENTS
Athens wishes to thank the U.S. Navy for its sponsorship of the Laguas research and also to thank Richard Olmo and Ephraim McDowell for the assistance they provided in the field. Dega would like to thank Dr. Laurie Locking, Chuck Streek, and Kanalei Shun for their support of the Saipan research. Dr. Paul Cleghorn, Randy Ogg, and Will Shapiro are also thanked for their great efforts on this project. Finally, we wish to express our gratitude to the anonymous reviewers of an earlier draft of this paper for their many helpful comments. Although they may wish to reserve judgment, we feel our presentation is greatly improved as a result.

REFERENCES

ATHENS, DEGA, WARD. AUSTRONESEAN COLONISATION OF THE MARIANA ISLANDS

Figure 6: Portion of the pollen diagram for Kagman sinkhole showing spore counts, large sample suite. Pollen Analyst: L.S. Cummings.

