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One of the difficulties in using the current Boolean-based information retrieval systems is that it is
hard for a user, especially a novice, to formulate an effective Boolean query. Query reformulation
can be even more difficult and complex than formulation since the user can have difficulty in
incorporating the new information gained from the previous search into his/her next query. In this
research, query reformulation is viewed as a classification problem (i.e., classifying documents as
either relevant or nonrelevant), and a new reformulation algorithm is proposed which builds a tree-
structured classifier (named the query tree) at each reformulation from a set of feedback documents
retrieved from the previous search. The query tree can be easily transformed into a Boolean query.
The query tree and two of the most important current query reformulation algorithms were compared
on benchmark test sets (CACM, CISI, and Medlars). The query tree showed significant
improvements over the current algorithms in most experiments. We attribute this improved
performance to the ability of the query tree algorithm to select good search terms and to represent
the relationships among search terms into a tree structure.

1. INTRODUCTION

Modemn computing technologies have had a great impact on the ways information is handled (e.g.,
from papers to electronic files), and brought many benefits to today's complicated information
management. By digitizing information, we are able to store massive amounts of information in
computer disks. For example, a single compact disc can hold 20 volumes of an encyclopedia with
sound, and thousands of pictures. In addition, the current proliferation of networks and on-line
databases make it possible to disseminate and retrieve information in fast and easy ways.
Information updates are simpler and cheaper in an electronic form than on paper. One might think
that electronic access would provide all the necessary information from a large database in a short
time with little effort. However, consider retrieving relevant articles from a collection of millions
of documents. A system with low performance can easily overload the user with unnecessary
information or lose potentially valuable information. What most users want is quality output, not
quantity. The fact is that finding the right information gets harder as more information becomes
available, and the big question is how the user can retrieve only the information he requested.
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The most fundamental information retrieval (IR) model is the Boolean retrieval model. The query
is a Boolean expression and the search is based on exact matching. Information is generally stored
in inverted files. The advantages of this model are simple structure, easy implementation, and fast
retrieval. Its inverted file structure allows set operations to be carried out easily. Critics of the
Boolean retrieval model [Bookstein, 1985; Araya, 1990] point out that several disadvantages exist
in this model. First, it is hard to control the size of the retrieved document set. Second, there is no
partial matching between a query and documents. If there is a term in a document which disagrees
with a query, it will not be retrieved even though every other terms satisfy the query. Finally, since
there is no term weight, the retrieved documents have equal importance which means no ranking
capability. To overcome these limitations, other advanced IR models have been developed such as
vector space, probabilistic, cluster-based models, etc. But the major operational IR systems are still
based on the Boolean retrieval model. There are a number of reasons for this situation [Radecki,
1982]: (1) the Boolean system is easy and efficient to implement in an online system; (2) there are
doubts as to whether other systems would work in operational IR systems (most experiments are
done on experimental systems); and (3) it may not be economical to include new technologies in
existing systems. One way to overcome this roadblock is to work alongside the existing Boolean-
based systems.

2. PROBLEMS

The main purpose of an information retrieval system is to deliver user-requested information
quickly, accurately, and easily. Current IR systems are often criticized for delivering only a portion
of what is requested along with nonrelevant information. Improvements in retrieval performance
(i.e., ability to retrieve only the relevant information) can be achieved from more effective query
formulation. The quality of a query fed to an IR system has a direct impact on the success of the
search outcomes, i.e., garbage in garbage out. In fact one of the most important but frustrating tasks
in information retrieval is query formulation. Most IR system users, especially novices, experience
some degree of difficulty in transforming their information needs into the required query language
(e.g., Boolean expression) of an IR system. In addition, there is very little help provided by current
IR systems. Users usually employ a trial-and-error search and often have to rely on an intermediary
(e.g., librarian) in searching for the right information. As more computers and networks become
available, experts would be less likely to be present in every site and expensive to employ. There
is a definite need for an IR system which cannot only help users formulate an effective query but
also increase retrieval performance.

Information search is an iterative process (in another word, a reformulation process). In current IR
systems, a user is responsible for constructing and providing the search with the system. The
reformulation process can be more difficult and complex than the formulation process. From
examining the previously retrieved documents, the user has greater difficulty in incorporating the
new information into his next query. It is more natural and easier for a user to identify or present
the relevance of information than to formulate a good query. Because the process is based on a trial-
and-error instead of systematic approaches, it is time-consuming and prone to errors. Variabilities
and inconsistencies of indexing schemes in different IR systems can also pose other hurdles to the

typical user.
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One of the major research areas in information retrieval is how to improve the Boolean-based IR
system's abilities (referred as effectiveness in information retrieval) to retrieve relevant information
and to reject nonrelevant information through the use of the relevance judgments of the previously
retrieved documents in query reformulation (this technique is often referred as relevance

" feedback). Another area of major research is how to ease the user’s role of query formulation
through automating the process of query formulation. A number of researchers [Vernimb, 1977;
Dillon and Desper, 1980; Dillon et al., 1983; Salton et al., 1984, 1985; Frants and Shapiro, 1991b]
have been working on automating the process of Boolean query reformulation using the relevance
feedback. The techniques proposed by these researchers share two major steps: the selection of
good search terms and formulation of a query in disjunctive normal form. The main differences are
in the ways to perform these two tasks. For query formulation, the initial inputs to the system are
received from the user in the form of either a list of search terms or a couple of relevant documents.
If the initial inputs to the algorithm are documents, index terms which are assigned to the -
documents are selected and ordered by the term importance which measures the degree of term
contribution to the search. Search terms with the highest term importance are selected and
formulated in disjunctive normal form (the term selection and formulation procedures depend on
an algorithm). If it is a reformulation process, a set of the previously retrieved documents with their
relevance are fed back to the system; the term importances of the index terms are updated and

reordered; and the query is reformulated as in the formulation process. For details, see [Salton

etal., 1984].

The main goal of this research is to develop a Boolean query reformulation method which
improves the effectiveness of the Boolean-based IR systems, and automates the reformulation
process. To achieve the goal, a new algorithm for the automatic reformulation of Boolean query is
developed from the perspective of classification. Query formulation is in fact a classification
problem, that is, to classify the documents as either relevant or nonrelevant. A classification
technique, based on CART (Classification And Regression Trees [Breiman, ez al., 1984]), was used
to formulate a Boolean query from a classification tree (named the query tree) capable of retrieving
relevant documents from the database. The two key factors in Boolean query formulation are
identification of good search terms and their relationships, which are represented by the Boolean
operators. In the query tree, promising terms are selected by a misclassification cost function, and
term relationships are represented by a tree structure.

3. THE QUERY TREE CLASSIFIER

Query formulation is in fact a classification problem; a query can be regarded as a classifier which
assigns documents in the database to the proper classes. In classification, there can be a number of
classes; for example, documents can be classified as highly relevant, relevant, somewhat relevant,
or nonrelevant. For this research, two classes of documents are considered, relevant and
nonrelevant.

The query tree is a tree classifier based on CART, capable of assigning documents to either relevant
or nonrelevant categories. An example is illustrated in Figure 1. The nodes in a query tree are
categorized into two types. The leaves, nodes with no descendants are called terminal nodes (in
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short, T-nodes), e.g., Node 4, 6, 8, 9, 10, and 11; the other nodes are called nonterminal nodes (in
short, NT-nodes), e.g., Node 1,2, 3, 5, and 7. Let X denote a query tree consisting of a set of T-
nodes (denoted as Xt) and a set of NT-nodes (denoted as Xy). For each node xeXt, a class is
assigned as either relevant or nonrelevant. For each node xe X, a criterion is set up to guide input
documents either to the right or left child node. Let d be a document in the database D and =1
denote that the fh index term is assigned to d. The criterion 1 in Figure 1 could be of the following
form: ,

forV de D, if #j=1, then send d to Node 2, else to Node 3.

Once a query tree is constructed, documents are classified as follows: each document d € D is
assigned to the root node. According to the criterion in the root node, d is sent either to the right or
left child node. By the next node's critetion, d is sent to one of its child nodes. This process .
continues until the document d reaches one of the T-nodes. Then, d is classified as either relevant
or nonrelevant by the class of the reached terminal node.

8 ] 10 11

Relevant Nonrelevant Relevant Nonrelevant

Figurel An Example of CART

3.1. Construction of the Query Tree

To construct a query tree, a sample of documents with known relevance is required. Let Dybe a set
of initial inputs from the database D where Dj consists of two classes: relevant (Dy,) and
nonrelevant (Dy,,). Construction of a tree classifier (query tree) consists of the three operations.
[Breiman, et al., 1984]: (1) at each node starting from the root node, “Are we going to split the
node?” — determination of the terminal nodes; (2) if the node is split, “How are we going to split
the data (e.g., documents) into the child nodes?” — selection of splitting criteria for the
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nonterminal nodes; and (3) if the node is not split, “What class does the node belong t0?” —
- assignments of the terminal nodes to a class.

~ The main idea of the query tree is to identify and capture characteristics of the input data and to
- group them into a same class (e.g., what makes this input data belong to a certain class?). The node
split is stopped when the data collected in the node becomes homogeneous. The impurity of node
x, Y(x) is defined as

y(x) = min[Pr(jlx)]  where j = “relevant” or “nonrelevant”.
J

The impurity function ¥(x) is maximum when Pr(“relevant” | x) = Pr(“nonrelevant” | x), and

- minimum when one of the proportions is zero; its range is 0Sy(x)<0.5 and it is symmetric along

the line Pr(“relevant” | x) = 0.5 (e.g., Pr(“relevant” | x) = 0.7 and Pr(“relevant” | x) = 0.3 have the
same W(x) = 0.3). The determination of the T-node (the first operation in the tree classifier
construction) can be achieved by setting a small threshold value & on the impurity y(x) such as,

If y(x)<d then stop the splitting and set the node x as terminal,
else continue the splitting.

A good criterion for splitting a node would makes its child nodes “purer” than their parent node.
For our example, it would be the criterion which divides the relevant and nonrelevant documents
perfectly. A reasonable splitting criterion would provide the child nodes with the smallest impurity
levels. The goodness of the split can be measured by the decrease in impurity level from node x to
its child nodes [Breiman, et al. 1984]. That is,

Ay(x,0) = Y(x) - Ppy(xy) - PRy(xg)

where G is a splitting criterion, and P; and Pp, are the proportion of document sent from the node
x to the left child node x; and the right child node xg, respectively. In the query tree, when a node
is determined to be a NT-node (i.e., decided to be split), one of possible splitting criterion would

be to select an index term t* in T; which provides the highest decrease in impurity, i.e., £* = max

(Ay(x, D)) for all ¢ € T}. After a term r* is selected, the splitting criterion at node x in the query tree
is as follows. For each document d in the node x,

if the term £* is present in d then send d to the left child,
else send d to the right child.

When the node x is determined as a T-node, the next step is to assign a class to the node x (the third
operation in the query tree construction). A simple way to determine a class of a node is to compare
the class proportions at node x such as

if Pr(relevant | x) > Pr(nonrelevant 1 x )

then the class of the node x is “relevant”
else the class of the node x is “nonrelevant”.
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The query tree construction procedure is summarized in Figure 2. It is clearer to describe the qQuery
tree algorithm with an example. Suppose that the sample of documents (4 relevant and 5
nonrelevant) as in Figure 3 is used as an input to the algorithm. Their relevance judgments are
hypothetically created for a user's information need, “articles on expert system applications in the
area of chemistry and physics.” The constructed query tree is also depicted in Figure 3.

Suppose that the threshold 3 is set to be 0.1. The initial 9 documents are assigned to the root node
(x7) and x; is pushed into a stack called N_stack (Step 1.1). The index terms assigned to the initial
nine documents are collected and stored in Ty (Step 1.2). Since N_stack is not empty, the root node
is then popped from N_stack and set to be C_node (Step 2.1). The impurity level of the root node
(i.e., Y(C_node) = 4/9) is higher than 8. In Step 2.2. the index term “exp. sys.” is selected, which
provides the highest AyW(C _node, 1) =2/9. The splitting criterion Criterion(x;, “exp.sys.”) is to send
documents with the term “exp.sys.” to the left child, otherwise to the right child. The left (x;) and
right (x3) child nodes are created and the documents 1, 2, 3, 4, 7, and 8 are assigned to x,, while
the rest are assigned to x3 (Step 2.2.3). Then x; and x3 are pushed into N_szack for further
consideration (Step 2.2.4). This is the end of one iteration in the WHILE loop. .

With two nodes in N_stack, x, is popped from N_stack and its node impurity level is computed.
With y(xy) = 1/3, it is still higher than 6 and another node split is carried out. The previously used

(Initialization)
1.1  Assign initial input documents D; to the root node and
put the root node into stack N_stack. ‘

1.2 Find terms assigned to D; and save them in T7.

(Tree Construction)
WHILE ( N _stack # & ) DO
2.1 C_node = Top(N_stack)
22 IF( y(C_node)< &)
THEN
2.2.1 Set C_node as T-node and assign a class to the node.
ELSE
222  Selecta term *
where r*= max Ay(C _node,t) and t€ Ty
2.2.3  Create the left and right child nodes for C_node and assign
the data in C_node to the child nodes according
to Criterion (C_node, t¥).
2.2.4  Put these child nodes in N_stack.
END OF IF
END OF WHILE

Figure 2 Procedure for the Query Tree Construction
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index terms are excluded for subsequent splits. This time the term “phy.” is chosen with the highest
Ay(x2, “phy.”) = 1/6. The documents 2, 4, and 8 which have index term “phy.” are sent to the left
child node x4 and documents 1, 3, and 7 to the right child node xs. Then x4 and x5 are pushed into
N stack. At the next iteration, the node x4 is popped from the stack and its W(x4) is 0, soitis -
assigned as the T-node and the class is “relevant” with all the relevant documents at the node (Step
2.2.1). The next node is popped again from N_stack and it is x5. With the Y(xs) = 1/3, the node x5
gets split and this process continues until N_stack is empty.

(1,2,3,4,5,6,7,8,9)
exp.sys. = 1 [ exp. sys. =0
(1,2,3,4,7,8) l (5,6,9)
x
3
phy. =1 phy.=0 Noo-Relevant
(2,4,8) l (1,37
"4
Releﬁnt chem. = 1 chem. =0
3,7
W 3.7
’6 3‘1
Relevant Non-Relevant
exp. sys.a b c phy d chem. ..... RELEVANCE
#1 1 0 1 0 0 1 1 . r
#2 1 0 0 0 1 1 r
#3 1 0 0 1 0 1 0 . n
#4 1 1 1 0 1 1 0. r
#5 0 0 0 0 1 1 I n
#6 0 0 1 0 1 1 0. n
#7 1 0 0 0 0 0 D . n
#38 1 0 0 0 1 1 0 5 r
#9 0 0 1 0 0 1 ¥ n
Note: the alphabets (e.g., "a" and "b") represent index terms and
the numbers (e.g., 1 and 2) represent documents. The
abbreviations are exp. sys. = expert systems; physics;chem.
= chemistry; r = relevant; and n = nonrelevant. An element
'l'm&nsﬂmindcxtcrmisawigned;othcrwiseitisnot
Figure 3 An Example of the Query Tree
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The basic concept of selecting a splitting criterion at node x in the query tree is to find an index
term with the largest decrease in impurity level (i.e., max Ay(x, #)). Experiments conducted for thig
study showed that the input documents, especially from the feedback documents during
reformulations, very often contain more nonrelevant documents than the relevant ones. That is, a
the root node the ratio of the nonrelevant to the relevant is much larger than 1. When this is the
case, care must be taken in selecting an index term for node split. :

Let C,, and C,,;, be the costs of assigning a document as relevant given that it is nonrelevant, and
nonrelevant given that it is relevant, respectively. Let N,,,(t.x) and N,,,(¢,x) be the number of
documents assigned as relevant given that they are nonrelevant, and the number of documents
assigned as nonrelevant given that they are relevant at the node x by the term ¢, respectively. The
total cost M(z,x) of misclassifying documents at node x by the index term ¢ can be defined as

M%) = Crjp * Nyyn0) + (Crgy * Ny 8.

For the term selection criterion (t*=maxAwy/(x, 7) in Figure 2 Step 2.2.2), there are no costs involved
in assigning documents to the wrong class; the cost is assumed to be equal. There are two different
types of node splitting policies: static and dynamic. If the costs C,;, and C,,, are set at the
beginning and do not vary at each node split, the splitting policy is said to be static; on the other
hand, if the costs vary, it is said to be dynamic. In a static node splitting policy, there is a large
number of combinations of costs which a policy can choose from (e.g., C,;, =1 Cpyp =2; Cpppy =3
Cr =1), and it is hard to decide which combination to use. In this research, a dynamic node
splitting policy is proposed, which updates the costs C,,, and C,,, automatically at each node
according to the proportion of the relevant documents to the nonrelevant. Let Nr(x) and Nn(x) be a
number of relevant and nonrelevant documents at node x, respectively. In a dynamic splitting
policy used here, the total cost M, of misclassifying documents at node x by the index term ¢ is
defined as

My (tx) = & o Ny (2.X) + (1 - @) * Ny, (2,x) where o = (N (X)/(N,(x) + N,(x))

In this cost function, C,, and C,,;, are replaced by o and (1- o) respectively and adjusted by the
number of relevant and nonrelevant documents at node x. This means when there are more
nonrelevant documents at the node than relevant ones, the cost of assigning the relevant to the
nonrelevant is more than that of assigning the nonrelevant to the relevant (i.e., @ < 0.5). In the
dynamic splitting policy, the cost weighting factor a changes from node to node; on the other hand,
in a static splitting policy, the costs C,,, and C,,, are fixed never to change. The term selection rule
in the dynamic policy is to select t* = min M(t, x) for all ¢ in T}. In this research, the dynamic
splitting policy is used instead of a static splitting policy because the dynamic policy is always as
good and frequently better than the static policy.

It is often the case that more than one index term has the same minimum total cost M, (i.e., there
are several candidate index terms to choose from). The dynamic splitting policy is extended to
handle the multiple case. Another way to select a term for node split is to use term importance
factors such as the “prevalence” proposed by Dillon's method and the “relevance weight” by the
DNF method. In our study, the function called term contribution is used, that is,
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The functions f,(#) and ff) represent the frequency of the term t in the relevant documents and the

database, respectively. The basic idea of £(#) is the assumption that the term importance of zis =

proportional to the frequency of ¢ in the relevant documents and inversely proportional to the total
frequency of ¢ in the database. It is similar to the Inverse Document Frequency (IDF) where the

* numerator of IDF is a frequency of a term in a single document [Salton and McGill, 1983). Let T*
be a set of index terms with the same minimum M(z, x). When there is more than one index term
in T*, the term contribution (7) can be used to decide which index term is to be selected (i.e., to
select a term with the highest (z). That is,.

IfIT*I =1 then t*=1¢ where e T*
else t* = max &(7) where re T*
t

If there is still more than one index term with the same minimum M(Z, x) and maximum &(7), then
select randomly one of index terms for node split (During the experiments, this case did not occur).
Now we need to update Step 2.2.2 in Figure 2, i.e., ' :

2.2.2 Atnode x, collect terms r* in T* where t*= minM (z, x) for all te T
IfiT*=1 then t*=t where te T*
else max &(1) where te T*
t

3.2. Transformation of Query Tree into a Query in DNF

After the query tree is completed, the documents in the database D can be classified by sending
them through the root node and se¢ where they end. Examining every document in the database
would be very inefficient, especially for a large database. The query tree can be transformed into a
Boolean query in DNF. Call a query generated from the query tree the Tree-derived query. The
transformation procedure is described in Figure 4. First, collect the T-nodes classified as relevant
and denote them as Xr,. For every  in X7, starting from the node x, read and collect its parents’
splitting index terms recursively up the root node; connect each term in the collected set with the
Boolean operator and. If the term is equal to zero (e.g. between the node x, and x5 in Figure 3), add
the Boolean operator not in front of the term. After finishing this process with every relevant
T-nodes, connect the anded clauses (i.e., conjuncts) with the Boolean operator or (Step3.2in
Figure 4); this will produce a Boolean query in DNF. From Figure 4, the DNF is

(“exp.sys.” and “phys.”) or ( “exp.sys.” and ( not “phys.”) and “chem.”)
This query is equivalent to

(“exp.sys.” and “chem.”) or ( "exp.sys.” and “phys.”).
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(Query Transformation)
1. FOR (each node x € query tree) DO
IF (xe X7,) THEN
Set C_node = x
WHILE (C_node # root node) DO
Collect a term ¢ in parent(C_node)
IF t = 1 THEN collect it in And_Term
IF t =0 THEN collect "not" + ¢ in And _Term
Set C_node = parent(C_node)
END (WHILE)
Connect terms in And_Term with "and" and store it in Or_Clause
END (IF)
END OF FOR
2. Formulate a query in DNF by connecting clauses in Or_Clause

with "or" operator.

Figure 4 Query Generation from a query tree

This is the query generated by the query tree algorithm for the user's information need on “expert
system applications in chemistry and physics”, which would be normally formulated as the query
just generated from the query tree.

3.3. Query Reformulation

So far we have discussed the query tree algorithm for a single query formulation. This section
describes a reformulation process with the query tree. The query tree algorithm is based on the
Boolean-based IR system and requires a set of initial inputs (learning sample) consisting of
relevant documents. (The algorithm does not require nonrelevant documents.) The initial inputs
can be supplied by the user in three forms: a list of few relevant documents, a list of search terms,
or a Boolean query. If the inputs are search terms, the system can (1) retrieve documents with a
Boolean query formulated as a disjunct of each search term supplied by the user, (2) present them
to the user in order of coordination level (the number of terms a document has in common with a
query), and (3) get relevance judgments in the retrieved set from the user. If the inputs are a
Boolean query, the same process can be implemented, except for the Boolean query formulation.

A real advantage of the query tree algorithm as well as the others, DNF and Dillon's method, is in
query reformulation with relevance feedback. Once an initial input is provided, the user is free
from formulating a Boolean query, and only needs to examine the retrieved set for its relevance.
The algorithm for query reformulation with the query tree is described in Figure 5.
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1. Prepare the initial inputs
2. WHILE (stopping criteria are not met) DO
2.1 Construct the query tree (Figure 3-2)
2.2 Transform the query tree into a Boolean query in DNF (Figure 3-4)
2.3 Retrieve and present documents to the user
2.4 Get relevance feedback and update the initial inputs.

3. END (WHILE)

Figure S Query Reformulation with the query tree

First, the initial inputs are prepared. Two sets of initial inputs are needed, one for tree growing and
the other for tree pruning (Step 1). The algorithm can be interrupted by either itself or the user (Step
2). There can be several stopping criteria during reformulation. One criterion for an algorithm is
no relevant documents in the input set. Another criterion is no or minimal changes between
documents retrieved from the i* reformulation and those from the (i+1)th reformulation. This
implies that either all the relevant documents are retrieved, or the algorithm is not getting new
information any more. The user can also stop the reformulation process if he is satisfied with the
search outcomes or tired. Step 2.1 and 2.2 (the tree growing and transforming) have been discussed
in the previous sections. Documents are retrieved and presented to the user for relevance judgments
(Step 2.3). Then the relevance feedback is added to the input sets (Step 2.4). A new tree is grown
from the updated input sets and the process is repeated until one of the stopping criteria is met.

4. EXPERIMENTAL RESULTS

To evaluate the retrieval performance (i.e. effectiveness) of the query tree, two of the current query !
reformulation algorithms were selected: the disjunctive normal form (DNF) method by Salton et
al. [1984, 1985] and an algorithm (call it Dillon's method) by Dillon et al. [1980, 1983]. These
algorithms were then compared on three widely-used test sets (the CACM, the CISI, and the
Medlars). In general, a test set consists of a collection of documents with various attributes (titles,
authors, abstracts, manually indexed keywords, etc.), a set of queries and their relevance
judgments. Queries in the test sets are represented in natural language form. Some of the test sets
(e.g., CACM and CISI) also come with a set of Boolean queries constructed from the natural
language descriptions. Statistics of the test sets used in the experiments are listed in Table 1. For 3
the experiments in this research, the original query sets are reduced to the sets of queries with more [
than 5 relevant documents since the algorithms require relevant documents in the initial inputs (see
3 and 4 in Table 1). The reported numbers of index terms are the number of unique terms after a
stemming is performed. The parameter settings for the DNF and Dillon’s methods are the same as l
those used in the experiments performed in [Salton et al., 1984].
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Table 1 Test Set Statistics "

CACM CISI Medlars
Description (Computer Sci.) (Information Sci.) (Medicine)

1. Number of documents 3204 1460 1033

2. Number of index terms 6166 5593 7276
(after the stemming)

3. Number of queries 64 111 30

4. Number of queries with more 41 73 30
than 5 relevant documents

5. Average number of relevant 19 43 23
documents of a query in 4.

6. Max. number of relevant 51 155 39
document in a query

7. Average index term frequency 53 94 118
in a document. .

e

Two of the most widely-used measures for effectiveness are recall and precision. Recall is defined
as the ratio of the number of relevant documents retrieved to the total number of relevant
documents in the collection. Precision is defined as the ratio of the number of relevant documents
retrieved to the total number of documents retrieved from the collection. One of the difficulties
using recall and precision is in comparing performance of several systems. Letr and p denote recall
and precision, respectively. Suppose that (r1, p1) and (r2, p2) are the pairs of recall and precision
from System 1 and System 2, respectively. The problem arises when r1 > r2 but p1 < p2 or vice
versa. It is hard to tell which system performs better overall. But the recall and precision are still
the most widely-used measures in information retrieval. It is known from experiments [Salton,
1986] that there exists an inverse relationship between recall and precision. This means as recall
increases, precision decreases and vice versa. To increase recall, it is necessary to bring more '
documents to the retrieved set, but at the same time the riew nonrelevant documents retrieved are
likely to decrease precision. Since two measures with the inverse relationship are hard to compare
and evaluate the effectiveness of systems, single measures of performance have been proposed.
The E-measure [Van Rijsbergen, 1979] is a composite measure which is a combination of recall
and precision in a single expression. That is, E = (1-(1/(a/p+(1-0)/r))) where ais a weighting factor
which can be adjusted according to the relative importance of recall and precision. In this research,
E-measure is selected to compare the performance of different algorithms. It is a widely-used
measure and the weighting factor  can be adjusted to control the importance of recall and

precision.
To measure the changes in system effectiveness during reformulations, one formulation (denoted
by reformulation 0) and five reformulations had been executed. The total number of initial input

documents to the algorithms is five (three relevant and two nonrelevant) and randomly selected
from the database. The number of feedback documents at each reformulation was set to 10. When
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feedback documents are sent to the algorithms, the documents used by an algorithm at the previous
reformulations are excluded from the current feedback documents. If there are no documents to
return, feedback documents are selected from the previously retrieved sets which were not used by
the algorithm.

Medlars
q @ DNF
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08 ® Q-iree ,
0.7
| |
06 2 " g m
E%S5 @
04 $ ¢ :
03 ®
02
01

o 1 2 3 4 5

Reformulatior

Figure 6 E-measure( o =0.5) vs. Reformulation in Medlars
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Figure 7 Median Recall and Precision with Interquartile range in Mediars
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To reduce the number of graphs and tables for performance outputs of the algorithms, the
weighting factor o of the E-measure is set at 0.5, and statistical analyses (e.g., significance tests)
were performed with performance at the 5t reformulation. And only the results of the test set,
Medlars are reported here in detail. For more detailed analysis, see [Kim, 1993].

In the Medlars test set, the DNF and query tree methods achieved steady improvement (see Figure
6), but there was not much improvement for Dillon's method during reformulations. The query tree
started to outperform the DNF method at the later reformulations (i.e., 3, 4 and 5) and the mean
difference got larger. Performance of the query tree at reformulation 1 was worse than that from
the previous query, but improved for the rest of the reformulations.

A limitation of a single measure such as the E-measure is that it does not reveal recall and precision.
In this research, a pair of median recall and precision is plotted along with its interquartile ranges
(Figure 7). The interquartile range contains the middle 50 percent of the scores. The lowest and
highest 25 percent of the scores lie outside the interquartile range. When the shape of a frequency
distribution is not symmetric, it is preferable to report the median as the average along with a
measure of variation, such as the in‘erquartile range [Tashman and Lamborn, 1979]. The main
purpose of this graph is for visual inspection, i.e., to show an evaluator the region of recall and
precision pairs generated by each algorithm. In the recall and precision graph (Figure 7), the DNF
method gained the highest median recall (0.88); and the query tree achieved the highest median
precision (1.0). The DNF and Dillon's methods gained higher recall than the query tree method; on
the other hand the query method outperformed the other methods in precision.

The significance tests (Wilcoxon signed-rank test [Chao, 1974]) on paired E-measures of two
algorithms are provided in Table 2. The tests were carried out at three different o levels: 0.33, 0.5,
and 0.66. At each level, two pairs of algorithms, (query tree, DNF) and (query tree, Dillon) were
tested. For all three cases, the query tree algorithm has a larger number of favored queries than the
others do. As the weighting factor o gets higher, which means more weight to precision, the
number of favored queries increases. This phenomenon is from high precision in the query tree
algorithm. The more weight there is to the precision, the lower the E-measure gets. (A lower
E-measure implies improvement.) In comparisons between the query tree and the DNF method, the
p values for the Wilcoxon signed-rank were all lower than 0.05 except when o = 0.33

(i.e., p=0.5071). And the query tree achieved between 3 to 38% less of the DNF's E-measure. -
Overall, the query tree performed better than the DNF at reformulation 5. Between the query tree
and Dillon's method, the differences were all statistically very significant (p < 0.0003).

5. CONCLUSIONS

In this research, Boolean query formulation was formalized as a problem of finding a query which
minimizes the costs of misclassifying documents to a wrong class (i.e., retrieving nonrelevant
documents and not retrieving relevant documents). The query tree algorithm, which is derived
from CART (Classification and Regression Trees) was developed to formulate an effective
Boolean query in a short time (its query formulation time took 0.27 second on average in Sun
SparcStation 2 with 64 MBytes of main memory and a 64 KBytes of cache while the DNF and
Dillon's methods took 0.57 and 1.10 seconds, respectively). For other experiments (CACM and
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Table 2 Statistical Analysis of Performance of the Algorithms in Medlars
(Q = query tree; D = DNF method; L = Dillon's method)

Medlars at the 5t reformulation

System

pairs Mean Differ. Improv. Query favoring Signif. Test
a b a b b-a b-a/b a b = Wilcoxon
=0.33

T>D 0.36 0.37 0.01 3% 19 11 0 0.5072
T>L 036 056 0.20 36% 24 6 0 0.0003
o =0.50

T>D 033 042 0.09 21% 22 8 0 0.0276
T L 033 062 0.29 47% 22 8 0 < 0.0001
o =0.66

T>D 029 047 0.18 38% 25 5 0 0.0005
T>L 029 0.67 038 57% 28 2 0 < 0.0001

CISI), the query tree also outperformed the current algorithms at the 5t reformulation. Overall, the
query tree's performance improved steadily during reformulations while the other methods showed
small or no improvement. The query tree had always achieved the highest average precision than
any other method.
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