Furtado-Vasco, J., Faucher, C., Chouraqui, E., Chouraqui, E., & Chouraqui, E. (1995). CONSTRUCTION OF FRAME HIERARCHIES
USING MACHINE LEARNING. 6th ASIS SIG/CR Classification Research Workshop, 37-52. doi:10.7152/acro.v6i1.12660

PROCEEDINGS OF THE 6th ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

|

CONSTRUCTION OF FRAME HIERARCHIES USING
MACHINE LEARNING

Jo#o José Furtado Vasco, Colette Faucher, Eugéne Chouraqui
DIAM-1USPIM - Université d'Aix Marseille Il Av. Escadrille Normandie-Niemen
F-13397 Marseille Cedex 20
Diam_efl@vmesal l.u-3mrs.fr

Abstract. In this paper, we describe an architecture for helping frame hierarchy conception. This architecture is based on
machine learning and cognitive psychological studies on categorization. Our basic assumption is that categorization should be considered
as a goal-driven, context-dependent process axi therefore the hierarchical organization of categories should be represented in different
perspectives. The core of our archilecture is a learning system of categorization that generates multi-perspective hierarchies. Concept
hierarchies are, at first, generated in a probabilistic representation and after transiated into a frame one.

Key Words: Categorisation, Frame-based Classification, Concept Formation.
1. INTRODUCTION

Object Oriented Representations (OOR) or frame-based languages organize pieces of
knowledge related to an entity in declarative structures ( frames ). In this context, there are
many works treating the classification of an entity in a frame hierarchy ([Rechenmann 88]
{Brachman 85] and [Napoli 90] to mention a few ) but hardly any of these works are
interested in an automatic construction of these hierarchies ( [Aguirre 89] is an example).
The modeling of these hierarchies requires complete acquaintance with the underlying
concepts of the domain to be represented. However, from a cognitive viewpoint, it is more
flexible to represent observations regarding things which a priori one doesn't know precisely,
but which allow one to construct, incrementally and automatically, abstract representations
that describe in intention these initial observations.

We propose an approach for construction of frame hierarchies that makes use of the
machine learning and cognitive psychology ideas of concept formation and categorization.
We have defined an architecture, called CONFORT (CONcept Formation in Object
RepresenTation), for construction of categories from observations (description of specific
entities, a conjunction with properties represented by attribute-value couples). This
architecture can be considered a knowledge acquisition tool for helping an expert in his
activity of expressing and elaborating concepts of his domain [Vasco 95a). According to
cognitive psychological studies, CONFORT is based on the assumption that categorization is
a goal-driven process [Barsalou 83],[Seifert 88], This assumption leads us to consider that
concept hierarchies should be viewed from different perspectives giving rise to different
hierarchical organizations according to different usage determined by the expert's
categorization goals or opinions.

The core of CONFORT is FORMVIEW, a learning algorithm of incremental concept
formation that we have developed using the frame-based language Objlog+ [Faucher 91].
FORMVIEW constructs multiple hierarchies of probabilistic concepts named probabilistic
concept trees [Fisher 88]. These trees are a hybrid representation where cases and abstract
concepts that subsume these cases are represented.  From probabilistic concepts, CONFORT
creates a frame-like representation. In this paper, we describe the main ideas of CONFORT
focusing on the concept formation algorithm FORMVIEW and on the aspects of the
transformation of probabilistic concepts to frames.
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This article has the following organization. In Section 2, we define some basic notions
and highlight considerations on frame-based representations and on concept formation from a
machine learning perspective. In Section 3, we describe the CONFORT architecture. Section
4 describes the concept formation algorithm FORMVIEW. In Section 5 we describe the
passage from probabilistic concepts to frames, and finally in Section 6 our conclusions are
stated and our future researches are indicated.

2. BACKGROUND

In order to design a software architecture for helping the frame hierarchy construction,
our researches are firstly focused on the concept formation problem. The main assumption,
that frames represent concepts of the world, leads us to consider understanding of the
human’s concept formation process. Therefore, our work is fundamentally based on
psychological findings about concepts and categories.

We consider a concept refer to an idea or notion by which people can understand some
aspects of the world [Hampton 93]. A category is a set of entities(objects, events, actions,
states, etc.) which are grouped together on the basis of some criterion of categorization. We
can thus associate the notions of concept and category because in reality a concept provides a
way to categorize the world into those entities that instantiate the concept, and those that do
not. In other words, considering a concept a categorization criterion, we can speak of the
category associated with a concept, as the set of entities that satisfies such a concept.
Typically, we use the expression that a concept represents or characterizes a category. This
distinction between concepts and categories is similar to the notions of intension and
extension. Concepts concern to intension(information used as categorization criterion)
whereas categories refer to extension(the members that satisfy the categorization criterion).
Below we define more formally these notions as well as some others that will be important to
the comprehension of this article.

Given

'E set of entities that will be categorized E={e}, €2, ..., & IneN}
P(E)  set of parts of E, called categories
A set of attributes describing the entities of E. Ex: A={Age, Sex, Tail}
v(J)  set of possible values of the attribute Jof A, u(Age)={young, Adult}
A% set of values of all the attributes € A; V={u(k) [k € A}
(0] an observation describing an entity e;0={pi=(j,v)| JEA veu() e AAX V)
we call pj a property of O (1 <i<n)
H a strict hierarchy (disjoint categories) to establish on E :
H is a finite not empty set of categories; H HE) - {<}
H is an oriented acyclic graph H=(?(E), <, R) where R is the maximal
element following the partial order relation < (specialization relation).
EC  the space of representation of categories (the admissible representations
according to some criterion)
Ck the representation of the category Cx( e AE) ): Ci € EC, called Concept

OB set of experts’ categorization goals experts; OB={ob, ob),...,obp} ,

PV set of perspectives reflecting the categorization goals. PV={pvy, pv3,..., Pvn}.
~ Each obk(e OB) correspond to one pvk (€ PV) (1 Sk < n),

HTpv is a hierarchy H established on E reflecting a perspective pv (e PV )

Furtado-Vasco, Faucher, Chouraqui 38
ISSN: 2324-9773



— Furtado-Vasco, J., Faucher, C., Chouraqui, E., Chouraqui, E., & Chouraqui, E. (1995). CONSTRUCTION OF FRAME HIERARCHIES
USING MACHINE LEARNING. 6th ASIS SIG/CR Classification Research Workshop, 37-52. doi:10.7152/acro.v6i1.12660

PROCEEDINGS OF THE 6th ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

2.1 Concept Formation from a Machine Learning Perspective

Machine leaming systems build concepts in intension from exemplars of their
extension. In this context, we concentrate on learning from observation systems or conceptual
clustering [Michalsky 86][Fisher 87]. These systems recognize regularities among a set of
non-preclassified entities or events and induce a concept hierarchy that organizes these
observations. Generally, concept formation systems can be defined by a quadruplet(H, I, C, )
[Thaise 91}, where :

e H is the possible space of concept hierarchies;

¢ I1is the set of observation about entities to categorize,

e C is a partitioning of all these entities in conceptual categories C; which are
structured hierarchically(Ce H) and optimizing a defined quality criterion,

o u 1s the set of operators of construction or organization of categories which we
can employ to the members of H to generate C.

A concept formation algorithm is reduced to a hill-climbing search, in H, for a
hierarchy of conceptual categories C that covers all the entities described in 1 and that
optimizes the evaluation function f{C, I) measuring the quality criterion. The fundamental
point of this research concerns the application of the u’s operator that produces an optimal
value for fC, I). On incremental concept formation, entities are treated one after another as
soon as they are observed. As the general case, the classification of new entities is made by
their adequacy to the existing conceptual categories.

A typical incremental concept formation system is COBWEB [ Fisher 87]. It is a
pioneer system influenced by research in cognitive psychology on basic level, probabilistic
concepts and typicality effects [Rosch 76](Fisher 93]. In addition, it has given rise to many
other successors ( BRIDGER [Reich 94] and CLASSIT [Gennari 89] are examples). Table 1
shows the main lines of a procedure of a COBWEB-like system.

FUNCTION PRINCIPAL (Root, Observation)
1. Incorporate Observation in Root

2. Choose the best operator to employ on the partition P of the Root’s direct sub-concepts, among the
following:

a) Incorporate Observation into a concept of P

b) Create a new concept under Roof to receive Observation

¢) Merge the 2 best concepts of P in a new concept that includes Observation

d) Split a concept of P in its children, adding Observation to the best of these
3. If the operation 2b , read another observation

Else return to 1 with Root = the concept of P in which Observation was inserted
Tabie 1. Control structure of s COBWEB-like system

2.2 Frame-based Representations

Frame-based representations have been shown to be adequate declarative knowledge
representation models. They structure the world upon the frame notion which describe either
a concept representing a category of entities or a concrete entity(an instance).

A frame is composed of slots which represent the attributes of the category's entities.
Each slot has a set of fucers to characterize them. Usually, frame-based languages have at
least two kind of facets: the value facet ( determine the slot value ), the domain facets (
determine the acceptable domain's values for the slot ).
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Frames can be linked by the specialization relation a-kind-of which represents a strict
set inclusion relation. We can say that a frame description is the superframe’s description
with some additional specific knowledge. Only this specific knowledge is stored in the
subframes, the specialization links allow an inheritance mechanism that finds out attributes in
high-level frames. A frame instance has only the value facet and is linked to a superframe via
the is-a link. The instance's values should satisfy the constraints defined in such a superframe
such as having values that belong to the superframe’s set of domain values.

3 THE CONFORT MAIN CHARACTERISTICS

CONFORT is a software architecture to help in the construction of frame hierarchies.
It is based on psychological cognitive and machine learning findings on categorisation and
concept formation. CONFORT supposes that goals of categorization exist (supplied by one or
more experts) prior to initiation of the process. Categorization uses a scheme to weigh an
observation's properties based on prior expectations of the relevance of particular properties
within the task domain. Both a property's relevances and relationships are represented in a
GDN (Goal Dependence Network) [Michalsky 86] according to categorization goals. Property
relationships are implications between initial observed properties(typically surface properties)
and those dependent on the expert domain(functional properties). Thus, an observation is
represented by observer's defined properties and eventually by GDN's inferred ones. An
expert should define goals, property relevance, property relationship and, in addition, he can
intervene to provide feedback to concept formation process.

A goal-driven concept formation process leads us naturally to a multi-perspective
representation since goals have influence on the determination of relevance for context-
specific features which will favour the generation of different hierarchical organizations. For
instance, to achieve the goal to buy a pet for a child, one would consider beauty and
cheapness as relevant properties. As a result, animal hierarchical organization will reflect this
particular situation and will probably be different from that generated from a veterinary
surgeon perspective where other properties would be relevant(e.g. physiologic properties).

The core of our architecture is FORMVIEW, a hill-climbing algorithm for concept
formation, that generates multiple hierarchies and uses a category quality measure that takes
into account the relevance of an observation's properties and generated categories in other
perspectives. Figure 1 illustrates the principal ideas of CONFORT.

In CONFORT, the construction of concept hierarchies is incremental and gradual,
allowing iterative reevaluations and an expert’s feedback, However, we suppose that these
hierarchies should reach a certain degree of stability in order to permit their exploitation( for
instance, with classification of new entities). Therefore, we have developed a phase of
translation from a probabilistic representation to an abstract frame-based one. The
FORMVIEW’s hybrid probabilistic representation stores observations and conceptual
structures that provide easy access to these observations. Reasoning at the case-level is most
productive when few training observations are available and noise is not present [Fisher 89].
However, when noise increases, this strategy can be inefficient. In this situation, abstract
representations are preferred since they are less sensitive to noise. That is another reason that
have motivated us to develop a passage from probabilistic concepts to frame representations.
This phase is executed after the incremental process of concept formation.

’
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Figure 1 CONFORT architecture.

4 FORMVIEW: CONSTRUCTING MULTI-PERSPECTIVE CONCEPT HIERARCHIES

FORMVIEW can be classified as a hill-climbing algorithm in a space of concept
hierarchies (which we have defined in Section 2). Its principal characteristic is the generation
of multiple hierarchies which represent different perspectives determined by categorization
goals.

4.1 Knowledge Representation in FORMVIEW

An important feature of CONFORT and particularly of FORMVIEW is that they were
developed in an OOR context. We integrate them into the frame-based language
Objlog+[Faucher 91] permitting an automatic construction of frame hierarchies from specific
entities. The details and advantages of this integration are out of the scope of this paper, and
can be obtained in [Vasco 95b]. Here, we will describe FORMVIEW’s components via the
formal notions defined early.

4.1.1 Description of Inputs

The main FORMVIEW input is an observation describing an entity that belongs to
E(cf.-definitions §2). FORMVIEW uses as additional data a goal dependence network(GDN).
This GDN contains: ,

- For each categorization goal, we define a degree of relevance( between 0 and
1) for each attribute-value pair. For instance:
Objectifl =[ (A1=V7, 0.9), (A3=Vy4. 0.3)],
Objectif2 =[ (A1=V3, 0.4), (A3=V5. 0.8)]
+ For cach categorization goal, the existence of an attribute-value pair can
determine the existence of another pair: ,
Objectify : (Aj=Vj => AL=V,)

Formally:
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Definition 1

A general depcnder?ce network conmsF for each oghﬁ-om QB, of two sets: inf .
A set IP of pairs 1p=(ppwm, pm ) where ppr (premisse property) and pm (conclusion
property) € P(A x V), thatis, IP ={ ipy, ip,..., ipz) and,
A set IW of doublets pw=(p, w) where p € P(A x V) and w € [0, 1)(p’s semantic
relevance), that is, IW) ={ iw], iw3,..., iwz).

With (1= j s k) (0 = z < card(P(A x V))).

4.1.2 Description of Concepts

At first, FORMVIEW constructs probabilistic concepts [Smith 81]. These concepts
have the probability that an observation is classified into the category represented by the
concept P(C), all possible values for their attributes and each such value having’its associated
predictability and predictiveness [Fisher 87]. The predictability is the conditional probability
that an observation x has value v for an attribute a, given that x is a member of a category C,
or P(a=v|C). The predictiveness is the conditional probability that x is member of C given
that x has value v for a or P(Cla=v). Indeed, FORMVIEW constructs multiple hierarchies of
probabilistic concepts named probabilistic concept trees [Fisher 88]. These trees are a hybrid
representation where cases and abstract concepts that subsume these cases are represented.

A probabilistic concept is a conjunction of characteristics defined by a quadruplet: (j,
D(j), PDV, PPV):

Where j is an attribute from A.
U(j)  isaset of values of the attribute j.

PD s the set of the values of the conditional probabilities P(j=v|C)
(predictability) for each value v (v e v(j)).

PP is the set of the values of the conditional probabilities P(Clj=v)
(predicteveness) for each value v(v & v(j)).

Formally:
Definition 2

Be a set of entities E defined by observations, and a hierarchy rHTpv built on E and
representing a perspective pv. In FORMVIEW, all category of entities C of H define the probabilistic

concept CP below:
CP = {(;, v(j), PD, PP)|j € A}
With PDeR

PP ¢ R
we name the pair (j, v) ; v €u(j); a property of CP

FORMVIEW constructs multiple probabilistic concept trees which represents different
points of view corresponding to different choices of categorization goals ( GDN’s goals ).

In our work, the basic ideas on multi-perspective representations were based on the
TROPES model[Marino 90]. The main feature of this model is the existence of a
communication channel among hierarchies representing different perspectives. This
communication is supplied with oriented links between categories called bridges. Two types
of bridges are possible: unidirectional and bi-directional. Bi-directional bridges represent set
equality relation while unidirectional one represent set inclusion relation. More precisely:
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Definition 3
A bridge between a category C of a perspective pv (Ce HTpv) and another category C” in
another perspective pv’(C’e H’Tpv’), noted as bridge(C,C), is defined as:
1 < C = C’ (bi-directional bridge)
bridge(C, C’}=0 <> C C C’(unidirectional bridge from C to C*)
-1 <> C @ C’(there is no bridge)

When observations which are
covered by a node(a concept representing a
category) C are included into the set of
observations which are covered by a node
C' in another perspective, a bridge from
C(source node) to Cftarget node) is
established. If the extension of C' is also

included in C, a bi-directional bridge is '*Tmmf'::r:m
created. Notice that both set inclusion and FEAT B VERTEGRATE
set equality relations accept the application KOG then Verisbrate

of the transiﬁyity property (horizontally, Figure 2 Multi-perspectivos in CONFORT
among perspectives) similar to the vertical

transitivity authorized by the specialization =

relation in a hierarchy. In addition, the specialization relation allows FORMVIEW to
establish hidden bridges between children of a bridge's source node and a bridge's target
node. Figure 2 illustrates two hierarchies following two perspectives and the bridges between
them.

4.2 The Utility Measure

As we have defined when we describe the main notions of the incremental concept
formation algorithms, the construction of a hierarchy of concepts follows a quality criterion.
FORMVIEW aims to construct such hierarchies privileging its prediction power. We will
describe briefly the utility function used by FORMVIEW. This function is, like many of
FORMVIEW predecessors, based on the work of Gluck and Corter on cognitive
psychology[Gluck 85], who have defined a function to discover, within a hierarchical
classification tree, the category more quickly remembered or the basic level category[Rosch
75). Gluck and Corter’s function, named category wtility, allows to measure the inferential
capacity of a category. They suggest that certain categories are preferred because they best
facilitate predictions about new observations. Supposing observations are represented as sets
of properties p;, then Gluck and Corter's measure of category utility (CU) can be described as
a trade-off between the expected number of features that can be correctly predicted about a
member of a category Cy , and the proportion of the environment P(Cy) to which those
predictions apply: P(Cy)E(No. of correctly predicted p;|Ci).

For instance, little can be predicted about a highly general category like animals, but
those properties that can be predicted (e.g. animate) apply to a large population. In contrast,
many features can be predicted with near certainty about highly specific categories like
robins, but thesc predictions are truc of a relatively small population. A category of
intermediate generality such as birds maximises the trade-off between the expected number of
accurate predictions and the scope of their application.
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Finally, category utility is defined as the increase in the expected number of properties
that can be correctly predicted given knowledge of a category (P(pj|C)?)!, over the expected
number of correct predictions without such knowledge (P(pj)?). Gluck and Corter CU can be
defined more formally as: )

Definition 4
Be a set of entities E defined by observations, a hierarchy H built on E. The utility of a
category C of H defining a probabilistic concept CP = {(j, v(j), PD, PP)|j € A} is
UC(C) = szi P(O)[P(ik=vilC)* - PGk=viy] (o)
Where vj € u(j) (i € N|0<ix card(v(j))), jk € A
By Bayes rule in a
ucicy= 21{2; P(i=vi)P(=vilC) P(Clik=vj) - P(Gk=vi)] ®
P(Cljk=vi) € PD
P(jk=vilC) € PP

In COBWERB, Fisher changed this formula to compute the utility of a disjoint concept
partition P={C,, C,,...,C,}as the mean of the utility of each category of P, Formally;

Definition § ,

The utility of a partition P={ C1, C3,...,Cp } of categories is:

UC(P)y= Zk UC(Cr)/n

Where (ke NjO<ksn)

Our approach requires some improvements in the formula defined above. First, we
changed it to take into account the categorization goals. This was possible via the utilization
of the semantic relevance of the properties defined in the GDN. In reality, we can verify that
the utility of a category UC defined above (definition 2b) has a pondering factor P(j,=v;) that
represents relevance of each attribute. However, this relevance is exclusively syntactic(based
on occurrence frequency) and we have changed it to take into consideration the semantic

relevance expressed in the GDN. Therefore, the semantic utility of a category UCs is defined
as below.

Definition 7
The semantic utility of a category C defining a probabilistic concept CP with a set of
properties I1={ pj|j e N )is:

UCs(€) = Zj A(Pj)P(Cle)P(PjIC) - Zj P(C)P(Pj)2

Where A(p,) = (the semantic relevance of the property pi + P(p,))

Similar to Fisher’s COBWEB, FORMVIEW computes the utility of a partition of
categories as the mean of semantic utilities of each partition category. However, it uses,
during concept hierarchy construction from a particular perspective, additional information
from other hierarchies which represent other perspectives. This is possible because, despite

different hierarchical organization and different intensional definition, concepts between
perspectives can have the same extension. These concepts are thus linked by bridges. In this

! Using a probability matching strategy, Gluck and Corter define that one can predict a property with
probability P(p;iCy) and this prediction will be correct with the same probability. Thus, E(No. of correctly
predicted p;lCy) = Z; P(pjICy)?.
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case, FORMVIEW’s additional strategy is to determine a complete partition with categories
of other hierarchies ; Those are target from bridges established from sources that are
categories from the initial partition. For instance, given a partition P with a set of categories
Gy, if a category C, from P establishes a bridge with another category C’; in another
perspective, C’y will make part of P, in consequence it will participate in computing the
utility of this partition. Formally:

Definition 8§

Be P={ C}, C2.....Cn } a category partition named source partition. P 2 H that represents a
perspective pv (€ PV) HTpv. Be H =(H’1 Tpvy, B2 Tpva,... W'mTov m } the set of hierarchies which
represent  others perspectives. We have H={ {C’ik, C1k+1,-Cleard(H'1 Tpv1)}{C 2k,
C%+1,-,Cocard @2 Tpv2)} - {C'mk. Cmk+1,-.Crncard(H'mTpvm) }}. A new partition Peom
called complete partition, including other categories of other existing perspectives is defined :

Peom =P U {C'nk}(15 h s m) (1s k s card(H' T pviy)

With C'pk 2 Cj (1= I < n) that is bridge(C}, C'i) = 0

It is important to point out that target categories, which will make part of the new
partition, contribute to the category utility calculation only with properties that there are not
present in the concept that represents the source category. In addition, if there are several
target categories with the same property, FORMVIEW selects those having the highest
predictability. Formally:

Definition 9
Be Pcom ={ Puurme, C} 8 complete partition with a source partition Py, and a set of
categorics C which Puux.'s categories establish of bridges. Prooue is the set of properties of Py 's

categories and Pr.. the set of properties of C. We define the set of useful properties P, of C to
compute the utility of the partition P source 35

szprsoum U{l’lpe{me- source}}

The rational behind these two latter strategies is that a complete partition and its
useful properties define a complete concept, independent from a particular perspective. Thus,
new entity classification is improved because a greater quantity of properties can be induced.

4.3 The Concept Formation Process

FORMVIEW has an initial phase of "data preparation” before the start of the concept
formation procedure. In this phase, following the presentation of an observation O, it searches
the relationship between properties of such an observation and other ones in the GDN This
can provoke modifications in the initial observation structure due to the insertion of new
attribute-value pairs(properties). More precisely:

A complete observation OC' for a perspective f (e PV) possesses the properties of the
initial observation O={p,, p,,....pm} plus those inferred from the GDN (OC'=0v {p‘“fk}(l s
k = card(IP")).

With (p, p")EP' (I1sism)

From complete observations, FORMVIEW generates several hierarchies reﬁect'ing
different perspectives or points of view according to GDN’s categorization goals. Each GDN
categorization goal determines a perspective to consider, then a specific hierarchy. The
concept formation procedure of FORMVIEW is a hill climbing search for the best partition
that can be generated from the application of the operators for hierarchy organization. More
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precisely, to categorize a new observation OC’' among the sub-concepts of a given concept(
partition Py ), FORMVIEW can :
» modify the partition P, incorporating OC’ in one of the Py’s categories and
giving rise to the partition P, ={C,,..., C,,...,C,,...,Ci}; With C, C,, being the two
best utilities to categorize OC that is to say UCs(C;) > UCs(C;) > UCs,( C,) (0< z
<k z=1,71).
¢ modify Py creating a new concept C, for receiving OC’, giving rise to the
partition P.(P. =R, U {C.})
* modify P, merging the two concepts C; et C, in one C,, giving rise to the
partition Pf(Pf= P() = {Ci, C,-}U {C,r})
* modify P, spliting the C; in its sub_concepts C;; {C.{ 1 = / = g, giving rise to
the partition P, (P, =Py~ {C;} U {C;), Cisy ..., Ciq}.

The choice of the partition where to integrate OC’ will be that which optimizes the
category utility UCs. However, notice that the partition used in this computing is the complete
partition for each operation, that is to say, FORMVIEW takes into consideration the possible
bridges between perspectives. Thus, we have the complete partitions P“™,, P“™, P P,
P*",. Notice also that in this computing FORMVIEW considers only the useful properties of
each complete partition.

FORMVIEW

1. From the first observation O, to find out the complete observations for each categorization goal t (OC*)

2. Create the roots R’ for each perceptive based on the complete observations (R'= OCY)

3. For each perspective t

3.1 For the next observations O
3.1.1 Compute the complete observation for perspective t (OCt)
3.1.2 PrincipalLoop (R', OC") -
PrincipalLoop (C, 0)

1. Incorporate (C, Q)

2. Compute the partitions P*™", P*, P*™, P°™_from the partition P, of C’s sub-concepts

3. Choose the best partition PB; PB=max(UCs(P“"™,), UCs(P*™,), UCs(P*™, UCs(P*™,))

4. Choose the best category CB from PB; CB=max(UCs(C,) (1 sk < card(PB))

5. If PB# PC, then replace C by CB and retum to 1

Incorporate(C, Q)

1. Update the predictabilities and predicteveness of the C’s properties

2. Insert the new observation in the list of observations covered by C

3. EstablishBridge(C, List of observations covered by C, O)

4. If bridge(C, C’) 2 0 (C’ € HTpv which did not treat O yet) then

4.1 Erase hridge
EstablishBridge(C, LstC, O)
1. For each HTpv that have already treated the observation O
1.1 Descend HTpv comparing LstC with the list of observations of H’s categonies (LstCurrent).
1.2 If LstC - LstCurrent = 0 then
build bi-directional bridge between C and current category of H
1.3 Else ¥ LstC = LstCurrent
build unidirectional bridge from C to current category of H
1.4 Else If LstCurrent > LsiC
build unidirectional bridge from current category of H to C
Table 2. FORMVIEW’s control structure

Another FORMVIEM feature is the management of bridges between perspectives.
This procedure is carried out when an observation is incorporated in a node of a hierarchy
that represents a certain perspective. At this moment, FORMVIEW descends other hierarchies
which have already treated the current observation in order to compare the set of observations
which are covered by the chosen node with those covered by nodes of hierarchies developed
from other perspective. Thus, it can build bridges between perspectives or even undoes
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unidirectional bridges from the chosen node to nodes in other taxonomies that did not treat
the current observation.

The basic FORMVIEW’s control structure is summarized in Table 2. There we can
see the functions FORMVIEW and PrincipalLoop. We can also see the Incorporate and
EstablishBridge functions which are responsible for management of bridges.

4.4 An Example of Multi-hierarchies Generation

We now consider an example of categorization in FORMVIEW. We have defined two
perspectives. In order to facilitate comparisons one of these perspectives(perspective 1)
defines a COBWEB-view, that is, we do not define anything in the GDN, Perspective 2
possesses a statement defining the relevance of the property FoodType=Packaged and its
implication to Character=Smart. The tiny GDN and the observations used in this
example[Martin 94] are described in Table 3.

Finch Inside Packaged Flies Feathers Two  Prodeggs Plain
Angelfish Outside Fresh Swims Scales Zero  Prodeggs Pretty
Macaw  Inside Packaged Flies Feathers Two  Fertilize Plain
Hamater Inside Packaged Walks Hair Four Fertilize Plain
Leopard Qutside Fresh Walke Hair Four Prodeggs Pretty

GoldFish Inside Packaged Swins Scales Zero  Prodeggs Pretty
Guppy Inside Packaged 8wins Scales Zero  Fertilizes Plain
Pigeon Outside Fresh Flies Feathers Two  Fertilize Plain
GDN Objective 2 FoodType=Packaged ==> Character=Smart
Foodtype=Packaged’s relevance = 1
Table 3 Animal observations and a tiny GDN

After 3 observations the generated hierarchies are the same ones. However, the fourth
observation(Hamster) leads to a different hierarchy organization since from the perspective
2(objective 2), FORMVIEW generates a hierarchy that cluster Hamster, Finch and Macaw
because they share the FoodT’ ype=packaged and Character=Smart properties(Figure 3a).
These properties, defined in the GDN with high relevance, accentuate the relation between
observations in which they participate. Figure 3b shows the hierarchies generated from all
observations of Table 3. There, we can clearly realize the two different clusters which reflect
the importance of the GDN’s specified properties.

| Domain  Input  Algorithm  Taxonomies Classification Feedback Help
Perspective { d
Hamster AngelFish
Foxch Macaw
Perspective 2
AngelFsh
Hoowter Yirch Macew arird

s} GoldFish Guppy b}

Figure 3 Hierarchies gencrated by FORMVIEW from the observations from Table 3
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5 FROM PROBABILISTIC CONCEPTS TO FRAMES

- ..

As we have mentioned a probabilistic concept tree has information about frequency
of both a concept's properties and observations. In the passage from probabilistic concepts to
an abstract representation, we keep this information in order to give more power to the

representation as well as providing useful heuristics for classification of future instances.

More precisely, the frequencies of occurrence of properties and their probabilities are used for
creation of descriptive facets which define default values, and sufficient and necessary

properties. The passage from probabilistic concepts to frames can be seen in two dimensions,

The horizontal dimension consists of the definition of properties(slots and descriptive facets)
which will compose the frame. The vertical dimension consists of the definition of the levels
of the frame hierarchies, that 1s, what frames should be maintained in the hierarchy and what
do not. Qur heuristics to define vertical and horizontal dimensions are based on psychological
findings that account for the probabilistic character of concepts [Smith 81],[Rosch 76],[Fisher

88]. .
5.1 The vertical dimension

7 “The vertical dimension consists of
searching in the probabilistic concept
hierarchies, for concepts which’' do not
have a large importance(in’ the sense
predictive power) and, 'therefore, do not -
justify their existence. Thus, iri a concept
hierarchy, if there is a' level having a’
concept that contains the predictive power
less: or equal than its parent level, it does
not have an'importance that justifies its'
passage from a probabilistic concept to a
frame. B o : D ‘ Figure 4 Preference points for two propertics in 2
B hypothetical tree

- To determine the better prediction level and which probabilistic concepts should be
transformed in frames, we use a strategy based on Fisher’s work [Fisher 89] on simplification
of probabilistic concept hierarchies. He has defined the notion of past preferences which
define that in a probabilistic concept hierarchy, we can identify preference points for each
attribute of a probabilistic concept. A preference point determines, for an attribute, the level
of the hierarchy where this attribute can have its value better predict. In other words, we can
predict, with reliable force, a value for this attribute in this level of the hierarchy, without
descend more specific levels in the hierarchy. Figure 4 illustrates this strategy [Fisher 95].
The P1’s preference points determine the hierarchy level where P1’s value can be predicted

reliably. ; ‘
5.1.1 The deﬁnitionl of preference points

"The basic,aésumptipn for determine preference points is that prediction of a missing

attribute should occur at a node(probabilistic concept) that historically has facilitated the
greatest number of correct predictions[Fisher 89]. The determination of this node is reached
via counts which are updated during the categorization process. Since the categorization
process consists in a descending research in the probabilistic concept hierarchy, every
observation attribute should be compared with those of the probabilistic concept in each
hierarchy level; If the observation's value is equal to the node's most frequent value then such
a value would have been correctly predicted at this point. For each attribute and node, a
count is maintained of the number of times the attribute would be correctly predicted during
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the categorization. Another count is used to keep the number of times the attribute would be
predicted at the node's children. The preference point is one where the node's attribute count
is greater than its children’s counts.

We can extend the preference point notion to the preference concept. In a preference
concept, all its attributes are preference points. This means that the preference concept’s
children are not important in the sense that attribute prediction can be realized in a superior
node. Therefore, CONFORT does not translate concept preference’s children to frames.

5.2 The horizontal dimension

The horizontal dimension consists of defining the frame’s properties. We use
descriptive facets to improve its characterization, giving an additional power to this kind of
representation. In fact, the probabilistic representation is characterized by the storing of
frequencies of attributes, values and concepts. Therefore, our idea is to profit from this
information to generate descriptive facets which will be a useful heuristic for classifications
of the next observations.

The properties represented in frames are defined by slots and facets. The slots
represent the probabilistic concept’s attributes. The facets characterize these slots
determining each slot's value and domain as well as specific facets to define the sufficient or
necessary nature of a slot and its default values.

£.2.1 The definition of sufficient properties

Sufficient properties are those that have predicteveness equal to 1. For instance, if the
predictiveness of a property p(with attribute a and value v) for a category C (i.e. P(Cjp)) is 1
then existence of p is sufficient to classify another observation in C. In other words, if
CONFORT has identified that all collected observations that have property p are covered by
C, then, as a result, CONFORT creates a facet for the attribute a defining the sufficiency of v
for the classification of other instances. The sufficiency of properties can be verified for a set
of properties P={ pl,p2,p3,..pn }. In this case, predicteveness should be computed from
P(Cip1,p2,p3,...pn)

5.2.2 The definition of necessary properties

Necessary properties are those that have predictability equal to 1. For instance, if the
predictability of a property p(with attribute a and value v) for a category C (i.e. P(p|C)) 1s |
then existence of p is necessary to classify another observation in C. In other words, being
informed that all the observations covered by C always have the property p, CONFORT
creates a facet for the attribute a defining the necessity of v for the classification of other
instanccs Similar to the definiton of sufficient propcrties necessary properties can be verified

from P(p1,p2,p3,. pnIC)
£.2.3 The definition of default values

The determination of default values is another feature of our model. In fact, few works
have been developed on default value assignment. Specifying a default value to a frame slot
means that such value is generally true to this slot and consequently can be inherited by the
associated sub-frames and instances. In CONFORT, when probabilistic concepts are
translated to frames, default values are defined from attribute-value's predictability and
predicteveness. The basic idea is to consider default values as those having predictability and
predicteveness greater than a user defined contextual threshold.
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Figure § Passage from probabilistic concept to frame

Figure 5 exemplifies the passage from probabilistic concepts to frames. We can see
that attribute 473 was not transformed to the frame representation because preference points
of its super-frame were better. Necessary and sufficient properties are defined from
probabilistic concept’s predictabilities(P(p|C)) and predictiveness(P(Clp)), respectively. The
Ail attribute’s Vall was determined a default value since it has predictability and
predictiveness greater than 0.85 (a user defined parameter).

6 CONCLUSION

We defined a software architecture for the incremental construction of concept
hierarchies. Our objective was to design a tool to assist in the conception of frame hierarchies
while maintaining the nature of a knowledge acquisition tool. This architecture has a learning
algorithm which generates multiple probabilistic concept hierarchies representing different
perspectives. At last, we showed the transformation of the probabilistic representation into a
frame-based one.
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