
PROCEEDINGS OF TIIE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP 121

An Object-Oriented Approach to Classification

Amedeo Napoli

LMIAS, Institute Le Bel, Universite Louis Pasteur, 67000 Strasbourg, France

Roland Ducournau

SEMA Group, 92 Montrouge, France

Claude Laurenco

CRIM, 34100 Montpellier, France

ABSTRACT

We present in this paper two possible semantics for the subsumption relation. On the one hand,
the subsumption relation is equivalent to the inheritance relation between concepts. On the other

hand, we define a subsumption relation that links concepts with other concepts, or with individual
instances, based on matching components between the linked entities. According to the first of
this dual view, we have developed a subsumption operation used for checking the consistency of
inheritance graphs. According to the second, a different subsumption operation is used for
enhancing the information retrieval and the problem-solving capabilities of a knowledge-based
system. Next we characterize object oriented languages in general, followed by the particular
language we use, which integrates frame-based and class-based features. We then present two
classification-based algorithms, corresponding to each use of the subsumption relation, and
discuss the way these are implemented using an object-oriented approach. We end the paper by
describing our particular problem-solving application in the domain of organic chemistry.

THE SUBSUMPTION RELATION REVISITED

One of the practical applications of classification is maintenance, in particular updating of

knowledge bases where real world concepts are described by objects organized in an inheritance
hierarchy. Inheritance refers to sharing of properties by all objects below the ones where the
properties are stored. Implementation of inheritance using class or frame data structures is
discussed in the next section of this paper.

Updating a knowledge base with a new concept requires two basic tasks. First, the new
concept must be described, and second, it must be placed in the correct location in the hierarchy.
For the second task, the classifier, whether human or automated, must retrieve, in relation to the
new concept, its immediate ancestors in the existing hierarchy. In addition, if these ancestors had
specializations in the original hierarchy, these would be checked to see if they should be

immediate specializations of the new concept instead. This classification process is achieved by a
subsumption operation which compares descriptions of concepts to check if the concepts are
related to one another according to this subsumption relation. Details of this algorithm are
provided in the section Classification-Based Processes.

Let us recall the definition of the subsumption relation as stated in term subsumption
languages (languages of the KL-ONE family) [Schmolze 83] [Brachman 85]: a concept A

subsumes a concept B only if the set denoted by A necessarily includes the set denoted by B. The
view presented in [Finin 86] is similar: A subsumes B if whatever is represented by the

TORONTO, NOV. 4,1990 A. NAPOLI, R. DUCOURNAU & C. LAURENCO

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

122 PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATlON RESEARCH WORKSHOP

description B is also represented by the more general description A. For example, the concept

Food subsumes the concept Fruit, the set of all fruits is included in the set of foods.

Generally, this subsumption relation is implemented as an inheritance relation. In both
expressions above, all characteristics of A are inherited by B: a fruit is a food and it inherits
food's properties such as the fact that a food does not kill anyone who eats it

For problem-solving applications, where specific components of descriptions (Le., categories
of components) of concepts are designated a priori as having special significance for solving a
problem, it can be useful to define subsumption as follows: a concept A subsumes a concept B if

A contains in its description an important component of the description of B. For example, the

concept Flour-containing-food contains in its description an important component, namely the
ingredient Flour, which is necessarily contained in the description of Bread.

A practical application of this view is to enhance pattem-directed problem-solving
capabilities of a knowledge-based system. A subsumption operation, differing from the one for

the first semantics, is used which determines that an individual B is subsumed by a concept A if
one of the components of B matches A. In this case, if B represents a goal to be reached,
problem-solving operations associated with A can be applied to solve B. Details of this algorithm
are provided in the last section of this paper, describing our actual chemistry problem-solving
application. For example, suppose that we want to make bread-314, then the cooking method
associated with Bread can be applied to bread-314 in order to make it. This example shows our

extension to the above definition to include not only linking two concepts, but also linking
concepts with individual instances.

This view of subsumption, unlike the first subsumption relation, does not have any
implications for inheritance. That is, concept B does not necessarily inherit properties from

concept A. In fact, A might be an actual component ofB. For example, in some problem-solving
application, it might be said that "Flour subsumes Bread' if this proved to be useful for solving a
problem. This statement would be analogous to "C=O (a chemical bond between carbon and
oxygen) subsumes Formaldehyde (a molecule containing this structure)" in our actual chemistry
problem-solving application, described in the final section of this paper.

INHERITANCE SYSTEMS

An inheritance system allows one to represented knowledge as a hierarchy of objects where

each object can be seen as a collection of properties describing a concept [Touretzky 86]. An
object encapsulates data and procedures acting on these data. Objects are partially ordered
according to an inheritance relation: each object inherits the properties of one or more ancestors,
Le., single or multiple inheritance, the ancestors' properties being virtually "added" to those of
the object. The inheritance relationship is transitive: each ancestor itself inherits the properties
of one or more ancestors, and so on. The inheritance hierarchy forms a graph which has an upper
bound corresponding to the most general object called the root of the inheritance graph.

In addition to describing concepts, objects may be descriptions of individual instances. For
example, the concept Person can have the specializations Parent and Grandparent, and the

instances Maria or Person-4 which represent individuals. Person can be considered a template

AN OBJECT-ORIENTED APPROACH TO CLASSIFlCAnON TORONTO, NOV. 4, 1990

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP 123

from which its instances are made. Instances are always leaves in the hierarchy, whereas all

internal nodes are concepts.

Inheritance systems are implemented using specialized computer languages which have

characteristic data structure. Two types of language are currently employed, class-based and

frame-based.

A class can be thought of as a template describing the structure and behavior of a set of

instances. The structure of an instance is given by a set of instance variables while its behavior is

represented by methods activated by means of message passing. A class may have one or several

superclasses from which it inherits its structures and behaviours. There are two sorts of

properties that may be inherited, structural properties and behavioral properties. Structure
inheritance is static, and it fixes an instance structure at its class creation. Inheritance of behavior

is dynamic, Le., methods are attached to a class and are selected at run-time. Thus, an instance
can only be created when its class has been defined. Moreover, an instance is modeled after its

class and cannot dynamically change its class. These features make it difficult to perfonn
classification-based reasoning in a simple way, in contrast to frame-based languages.

Frame-based languages are based on prototype theory which relies on the following
assumption: a family of real objects can be represented by one typical well-known object, called

prototype, which detennines the majority of properties shared by members of the family [Cohen
84]. Each object is a specialization of one or more prototypes and can itself be a prototype. All
objects are linked in an inheritance hierarchy, and they dynamically inherit their ancestors'
properties. Frame-based languages do not nonnally have a built-in distinction between frames

describing concepts and frames describing instances. An instance corresponds to a leaf in the
inheritance graph, and is usually the description of an individual.

Real-world knowledge is rather difficult to represent within a single representation fonnalism

because each has characteristic advantages and disadvantages. Representation languages based

on objects have therefore evolved towards hybrid languages which integrate frames. classes, and
rules fonnalisms. In the following dection we describe the hybrid language YAFOOL that we

use in our application.

YAFOOL: AN OBJECT-ORIENTED LANGUAGE FOR KNOWLEDGE REPRESENTAnON

YAFOOL is an object-oriented language of the knowledge engineering system Y3, which

includes YAFEN, a graphic programming environment, and YAFLOG, a Prolog-like inerence

engine. It is a hybrid object-oriented language: a frame-based language which possesses class­
based language features (Ducournau 89J. An object is a frame composed of a collection of slots

denoting the properties of a concept There are two types of slot, attribute slots and method slots,

which, respectively, describe the characteristics and the behavior of the concept. Attributes are
annotated by declarative or procedural facets. As is usual in frame-based languages, inheritance

of any property, attribute, or method is dynamic [Ducoumau 87J. Inheritance paths are fonned
by the is-a slot which links frames in an inheritance hierarchy.

Let us consider for example the frame definitions of the concepts Food and Flour~

containing1ood:

TORONTO, NOV. 4; 1990 A. NAPOLI, R. DUCOURNAU & C. LAURENCO

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

124 PROCEEDINGS OF THE 1ST ASIS SIGleR CLASSIFICAnON RESEARCH WORKSHOP

(defmodel Food
(is-a ($value ldeal-object»
(weight ($a Float»
(price ($aFloat»
(creation ($method food-create»)

(defmodel Flour-containing-food
(is-a ($value Food»
(shape ($a Symbol)

($domain long round with-a-hole without-hole»
(cooking-time ($a Float»
(ingredient ($a Ingredient)

($domain Flour Water Salt»)

The frame Food is a subframe of the most general, system-defined frame called Ideal-object.
Each frame (except this most general frame) is a subframe of another frame. This second frame

is an actual value introduced by the $value facet in the is-a slot of the subframe. In the above
example, the frame Food is a subframe of the most general frame Ideal-object. Similarly, the

frame Flour-containing-food is a subframe of Food. This subframe linkage implements
inheritance; that is, Flour-containing-food inherits the properties of Food, and in tum, Food

inherits the properties of Ideal-object.

Facet semantics are nearly classical [Masini 90]. The declarative facet $value is used to
introduce the actual value of the attribute, which can be used both as a default or a fixed value.
The frame linked to the current frame by is-a is introduced by this $value facet Other declarative

facets are used to describe the value of the attribute. These are divided into typing facets, $a and
$list-of, and restriction facets, $domain and $interval. For example, the attribute ingredient in the
frame Flour-containing-food has the type Ingredient, which is a frame presumed to be defined
elsewhere. The $domain facet attached to this attribute declares the three basic ingredients which
can be found in a flour-containing food.

Four procedural facets introduce reflexes (also known as demons) which are triggered when a
slot is accessed, Le., reading (when a value is read from a slot) or writing (when a value is written
into a slot). The $if-needed facet holds a reflex to be run whenever a value is needed but none is
present or cannot be inherited. The $required facet introduces a boolean reflex which checks the

validity of a value to be written into the slot This reflex is particularly employed to implement
constraints that cannot be given by typing facets because they hold on several slots. The $if­
added facet introduces a reflex to be run whenever a value is given or added to the slot. In a
similar way, the $if-removed facet holds a reflex to be run whenever a value is removed from the

slot.

Methods are introduced by the special facet $method. The slot name corresponds to the
selector of the method, which is activated by message passing. For example, the method

associated with the selector creation in the frame Food is used to create instances (e.g.,food-l).

Let us consider for example the frames Bread and Pasta:

AN OBJECT-ORIENTED APPROACH TO CLASSIFICAnON TORONTO. NOV. 4. 1990

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

\SSIFICAnON RESEARCH WORKSHOP 125

~ad-eooking-time»)

ita-cooking-time»)

The value of the attribute cooking-time is computed by an if-needed reflex (a reflex is named

according to the facet holding it) which is different for the frame Pasta and Bread (we suppose

that this computation depends on the shape and the weight of the instances manipulated). These

two frames also have a method the selector of which is cook. The method is implemented by two
different ftmctions, the cooking mode being different for Bread and Pasta.

Programming consists of slot accesses and message passing using special primitives called

applicators. According to the type of slot accessed, whether attribute or method, the :: applicator

respectively perfonns a read access or a message passing. Standard reading mode is done

according to Z inheritance [Winston 84]: an attribute value is first searched in the $value facet,

and if there is none, in the $if-needed facet. A search is done level by level until a value is

delivered or the root of the inheritance graph is reached. A value computed by an if-needed

reflex is written into the attribute $value facet. For example, consider the following expressions
(? is the user prompt; = precedes the system reply):

? (:: creation Bread '(shape long) '(weight 1»
= bread-l
? (:: shape bread-I)
=long

The first expression is the sending of the message, naming the selector creation, to the frame

Bread, with initialization of the attributes shape and weight. This selector does not appear

explicitly in the frame Bread. but is inherited by this frame from the frame Food via the is-a link

from Bread to Food. The result of applying this method, i.e, running thefood-create function, is

an instance of the frame Bread named bread-I (this name is assigned automatically by the

system). The second expression is an access to the value of the slot shape in the newly-created
instance bread-I. An example of solving a problem by sending a message specifying the selector

cook is presented in the next section of this paper.

Applicators .o= and .o+.o are used to write a slot value. Writing is a three-step operation:

constraints satisfaction checking, filling the slot value, and if-added reflex activation. All

constraints, inherited or not, specified either by typing facets or required reflexes, must be

satisfied. Constraints are checked in top-down order, and no writing is done if anyone of the

constraints is not satisfied. After the filling step, the if-added reflexes, inherited reflexes included,

are run in top-down order (the same order as constraints checking). The applicator .o- is used to
remove a slot value. This operation consists of removing the value and then triggering the if­

removed reflexes. All if-removed reflexes, inherited or not, are triggered in bottom-up order.

The semantics of reflexes are based on the assumption that reflexes have the same generality as

TORONTO, NOV. 4, 1990 A. NAPOU, R. DUCOURNAU & C. LAURENCO

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

126 PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICAnON RESEARCH WORKSHOP

the frames they belong to. Thus, reflexes must be run in an up-to-date environment: operations

linked to specific information must be executed in an environment where general information is

up-to-date.

YAFOOL is a reflective language: each entity is represented by a frame which contains

information about itself [Maes 87]. Thus slots and facets are themselves objects which are

organized in a multiple inheritance graph whose root is called Ideal-dual. a subframe of Ideal­

object. Reflection permits associating meta-knowledge with each frame. For example, each slot

contains an attribute which lists the frames it is part of, and each frame contains an attribute

whose value is the ranked list of its important slots. This reflective knowledge is used for

classification-based processes. as described in the next section.

CLASSIFICAnON-BASED PROCESSES

Our approach to classification is inspired by the works done work done on KL-ONE [Lipkis

82]. However. our particular development is based on the two semantics of the subsumption

relation as presented at the beginning of this paper: the first is used for checking consistency of

inheritance graphs, while the second is used in problem-solving.

To check for subsumption between two concepts, Le., to determine that the subsumption

relation holds. we have defined a subsumption operation. This operation is distributed and is

performed by means of message passing: a subsumption operation method is attached to the root

of the inheritance graph and can be specialized for any particular frame. The most general

method checks if a frame A is a subsumer of the frame B (the subsumee): all valued slots of B,

inherited slots included, for consistency with corresponding slots of A. Specifically, slot values in

the subsumee frame must be consistent with slot value requirements, e.g., type restrictions and

cardinality, declared in the subsumer frame. For example, the system can check that the frames

Bread and Pasta are well-defined. An if-needed reflex in Pasta is run to compute the value of the

attribute cooking-time; there are no other attribute redefinitions for this particular frame. In the

frame Bread, the domain associated with the attribute shape is redefined and checked to be sure it

is included in the shape domain declared in the frame above it in the hierarchy, namely Flour­

containingjood.

The fact that the subsumption operation is distributed is an advantage because it permits

redefining this operation according to the particular characteristics of each frame. A frame A

subsumes a frame B if each component of A subsumes each component of B. As said above. all

entities are represented by objects. and the subsumption operation can be particularized for any

object. In particular, an attribute a1 in A subsumes the corresponding attribute 02 in B if the

values of the facets attached to a1 subsume the values of the facets attached to 02. The

subsumption operation is defined on the facets as follows: the type of a1 subsumes the type of

02: the domain or interval associated with 02 must be included in.the corresponding domain or

interval defined in a1; a value given by a $value facet being considered as a default value must

have a type which is in accordance with the attribute's typing facet.

Suppose we have to add a new concept, named C, in an the inheritance graph (we can also

consider C an existing concept to be reclassified). We first consider the list of frames that share

AN OBJECT-ORIENTED APPROACH TO CLASSIFICAnON TORONTO, NOV. 4, 1990

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP 127

at least one slot with C. This list is established using reflective information associated with

frames that describe the slots of C. The list contains the candidate subsumer frames. It is sorted

in order to put the most general frames, i.e., those frames sharing the fewest slots with C, at the

front of the list. Frames which do not share any slot with the concept are ignored. Using the

operation described in the preceding paragraph, each frame of the candidate list is then tested to
check whether it subsumes C. If the current frame does not subsume the concept, none of its

specializations could either because of transitivity of the inheritance relation: frames in the
subgraph whose root is the current frame will be ignored and thus are removed from the

candidate subsumers list. If the current frame subsumes the concept. it is written to a list

containing the potential subsumers. This process continues until the candidate subsumers list is

empty. The list of potential subsumers is then sorted in order to keep only the most specific
frames, which become the most specific subsumers. The most general subsumees are found

amongst the specializations of the most specific subsumers in the same way, testing if C

subsumes these specializations.

Suppose we want to classify the following general description

(defmodel X
(is-a ($value Ideal-object»
(shape ($value long with-a-hole»
(ingredient ($value Flour Water»)

The list of candidate subsurners will be defined by the intersection of the frames list defining the

attributes shape and ingredient (system attributes such as is-a are not considered). This list is

(Flour-containing-food Bread Pasta). The frame Flour-containing-jood subsumes X because

attribute values of X are consistent with value requirements declared in Flour-containing-food,
i.e., the value for shape is included in the domain associated with shape in Flour-containing- .

food; the value for ingredient is included in the domain associated with ingredient in Food, which
is inherited by Flour-containing-jood. Analogously, the frame Pasta subsumes X. However, the

frame Bread does not subsume X because the the attribute value for shape does not correspond to

any value declared in the domain associated with shape in Bread. The frame Pasta being a

subframe of Flour-containing-jood, the former remains the only frame in the candidate list, and it
becomes the subsumer of X.

The second classification-based application is an indexing application. In this indexing

process, we are concerned with finding frames in the knowledge base that describe a particular

instance frame presented to the system. These knowledge base frames presumably have

associated methods which can then be used in a problem-solving strategy with respect to the
given instance. The subsumption operation for this application differs from the one above in the

following respect: only a priori designated important slots are considered in the first step of

matching the given instance, i.e., the instance need not be fully subsumed by matching

knowledge base frames.

Suppose that the goal of a problem is to build the product described by the previously

presented frame X. We also know that building a product is performed via the sending of a
message specifying the selector cook. We found that the frame Pasta subsumes the frame X.

Thus the problem can be solved by applying to the frame X the cook method associated with

TORONTO, NOV. 4, 1990 A. NAPOLI, R. DUCOURNAU & C. LAURENCO

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

128 PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICAnON RESEARCH WORKSHOP

Pasta. The result of this application is the solution to the current problem. This example only

briefly sketches the problem-solving scheme that we use to build a synthetic molecule. We-­

present this scheme in the following section.

CLASSIFICAnON FOR CHEMICAL PROBLEM·SOLVING

Our system is a computer-assisted synthesis system aimed at building up organic molecules,

called target molecules, from readily available starting materials [Laurenco 90]. Once a target

molecule has been chosen, the system searches for a synthetic plan which is defined by one or

more synthetic paths, each of them constituted by a sequence of reactions leading from starting

materials to the target molecule. A synthetic path is generally made up using either a

retrosynthetic or a synthetic approach. In the first case, the target molecule is broken down into

fragments which by some reactions lead to the target molecule. In the second case, starting

materials are selected according to the structure of the target molecule, and then one checks that

at least one synthetic path leads from these reagents to the target molecule. All basic chemical

objects, such as atoms, bonds, molecules, and reactions, are described as frames in the knowledge

representation language presented in an earlier section in this paper and in [Napoli 90]. Both

synthetic and retrosynthetic approaches use classification-based processes described in the

preceding section of this paper.

We briefly describe the retrosynthetic strategy in the following. The important chemical

substructures which are potential reaction sites are organized in a graph called reactive structures

graph. The second subsumption operation is used to build the graph: a structure Sl subsumes a

structure S2 if SJ is part of the description of S2. For example, the functional group C=O

subsumes the formaldehyde molecule (two hydrogen atoms bonded to the carbon atom of C=O).

The fact that the C=O group subsumes the formaldehyde molecule does not mean that the

molecule inherits the properties of C=O, but that one can use chemical reactions attached to the

group C=O to build the molecule.

To find methods to build a given target molecule M, the system tries to identify function

groups in the reactive structures graph that are contained in the description of M by using a

structural matching approach [Goel89]. First, the system searches for the primitive reaction sites

belonging to the target molecule. The primitive sites are simple structures comprised of a single

bond, such as C=O. This first matching operation is therefore efficient, and guides the rest of the

process: complex reaction sites are searched in the subgraphs of the reactive structures graph

whose roots are the primitive reaction sites. Thus, the process for describing the target molecule

in terms of reaction sites can be seen as a sequence of partial matching within the reactive

structures graph.

Three special attributes, schema+, schema-, and schema, are attached to each reactive

structure. They indicate the set of chemical reaction schemes which can build the structure. For

a given structure G, schema+ introduces all reactions that build G but do not build its subsumers

in the reactive structures graph. The attribute schema- introduces all reactions which do not build

G but build its subsumers (this attribute plays a role analogous to shadowing for the inheritance

relation). The value of schema is the complete list of reactions that build G. It is computed by

the following formula: schema(G) = schema+(G) - schema-(G) U schema(g), for all g in the

AN OBJECf-ORIENTED APPROACH TO CLASSIFICAnON TORONTO, NOV. 4, 1990

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

PROCEEDINGS OF TIIE 1ST ASIS SIG/CR CLASSIFICAnON RESEARCH WORKSHOP 129

subsumer set of G in the reactive structures graph. The computation of the list of the subsumers

of G is analogous to the computation of the precedence list of a frame within the inheritance

graph.

Given a target molecule M, the system tries to match part of the description of M to the

reactive structures graph. These reaction sites, which we consider subsumers of M (according to

the second view of subsumption) have schema attributes which contain reactions that can be

applied to build M. When a method has been chosen and applied, the target M is broken into

fragments. The process can be applied recursively to these fragments (new target molecules),

until fragments of known starting materials are obtained.

The synthetic strategy for solving this problem is only partially treated and is still under

study. Briefly, the system searches for basic reagents that subsume the target molecule. Basic

reactions which are associated with these reagents, more precisely with the reagent family, are

selected if they can lead from the reagent to the target molecule or a part of it.

BIBLIOGRAPHY

[Brachman 85] RJ. Brachman and J.G. Schmolze, An Overview of the KL-ONE Knowledge

Representation System, Cognitive Science, 9(2):171-216, 1985.

[Cohen 84] B. Cohen and G.L. Murphy, Models of Concepts, Cognitive Science, 8(1):27­

58, 1984.

[Ducoumau 87] R Ducournau and M. Habib, On some Algorithms for Multiple Inheritance in

Object Oriented Programming, Proceedings of ECOOP'87, Paris, [Special

issue of Bigre 54 or Lecture Notes in Computer Science 276), pages 291-300,

1987.

[Ducoumau 89] R Ducournau, Y3. Langage a objets. Version 3.22. SEMA GROUP,

Montrouge,1989.

[Finin 86] T.W. Finin, Interactive Oassification: A Technique for Acquiring and

Maintaining Knowledge Bases, Proceedings of the IEEE, 74(10):1414-1421,

1986.

[Goel89] A. Goel and T. Bylander, Computational Feasibility of Structured Matching,

IEEE Transactions on Pattern Analysis and Machine Intelligence,

11(12):1312-1316,1989

[Laurenco 90] C. Laurenco and M. Py and A. Napoli and J. Quinqueton and B. Castro,

Representation de connaissances en synthese organique aI' aide d 'un langage a
objets, New Journal of Chemistry, December 1990, (to be published).

TORONTO, NOV. 4, 1990 A. NAPOLI, R. DUCOURNAU & C. LAURENCO

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

130 PROCEEDINGS OF TIlE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

[Lipids 82] T. Lipids A KL-ONE Oassitier, in Proceedings of the 1981 KL-ONE

Workshop, J.G. Schmolze and R.J. Brachman editors, Fairchild Technical

Repon no. 618, pages 126-143, 1982.

[Maes 87] P. Maes. Computational Reflection, Technical report, 00. 87_2, Anificial

Intelligence Laboratory, Vrije Universiteit Brussel, 1987.

[Masini 89] G. Masini, A. Napoli, D. Colnet. D. Leonard, and K. Tombre. Les langages a

objets, InterEditions, Paris, 1989.

[Napoli 90] A. Napoli, Using Frame-Based Representation Languages to Describe

Chemical Objects, New Journal of Chemistry, December 1990, (to be

published).

[Sclunolze 83] J.G. Schmolze and T.A. Lipids. Oassification in the KL-ONE Knowledge

Representation System In Proceedings of UCAI'83, Karlsruhe, West Germany,

pages 330-332, 1983.

[Touretzky 86] D.S. Touretzky, The Mathematics of Inheritance, Morgan Kaufmann

Publishers Inc., Los Altos, California, 1986.

[Winston 84] P.R. Winston, Anificial Intelligence, Second Edition, Addison-Wesley,

Reading, Massachusetts, 1984.

AN OBJECT-ORIENTED APPROACH TO CLASSIFICATION TORONTO, NOV. 4, 1990

Napoli, A., Ducournau, R., & Laurenco, C. (1990). An approach to object-oriented classification. Proceedings of the 1st ASIS
SIG/CR Classification Research Workshop, 121-131. doi: 10.7152/acro.v1i1.12471

ISSN: 2324-9773

	Napoli1
	Napoli2
	Napoli3
	Napoli4
	Napoli5
	Napoli6
	Napoli7
	Napoli8
	Napoli9
	Napoli10

