
PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP 149

Development of a Requirements Classification Scheme
for Automated Support of Software Development

Dolly Samson

Computer Information Systems Departtnent, Weber State College,
Ogden, Utah 84408-3804, USA

PROBLEM OF REQUIREMENTS ANALYSIS IN SOFTWARE ENGINEERING

Computer hardware technology has advanced to the point where it is feasible to develop
software systems that exceed one million lines of code. Software engineering, the discipline

concerned with developing these systems, typically includes the following phases in the software

development cycle: requirements phase, design phase, implementation phase, test phase and the
installation and checkout phase [IEEE, 1983]. This paper is concerned with a classification
scheme to support knowledge-based analysis of software requirements.

Because requirements in these large systems can become quite numerous and complex, it is a

very difficult task to analyze them in order to identify potential problems, i.e., problems that may
arise in later phases, such as incompleteness, conflict, ambiguity, and absence of testability.
Current software productivity tools such as CASE (Computer-Aided Software Engineering),
executable requirements languages, prototyping tools, and test harnesses provide much assistance
in later phases of software development, but not much for the requirements phase.

It is well-known in software engineering that the most costly and profound software errors are
likely to occur at the requirements definition phase, early in the software development cycle. The
productivity tools mentioned earlier either work from code which has been developed for the

system. or work with user requirements statements which have been translated into a restricted,
formal language. There are several problems with translating user requirements into a formal

language very early in the project First, it is difficult for the user to understand requirements as
they have been translated and interpreted by the systems analyst. Second, the systems analyst

may have made wrong assumptions or interpretations in the process of translation. Finally, formal
languages do not have any provision for ambiguity, and early in the requirements phase,
ambiguities may exist, to be worked out as more is learned about the system.

KNOWLEDGE-BASED SYSTEMS FOR REQUIREMENTS ANALYSIS AND TEST PLANNING

The focus of my work has been to use a knowledge-based approach to performing analysis of
requirements to detect potential problems, primarily lack of testability. The knowledge-based

system includes a classification scheme to represent software requirements as faetualknowledge,
and rules describing typical requirements characteristics as procedural knowledge. Terms in this

classification scheme are used for indexing the requirements, and for providing access points used
by the procedural pan of the system. The classification scheme, including the structure and
methodology used to develop it, will be described later on.

As an example of a requirements conflict problem, let us assume two requirements are
indexed as software portability and operating efficiency (terms in the classification scheme). In

most software systems, these two concepts of portability and efficiency would conflict When
hundreds of requirements such as these have been defined for a software system, this problem

TORONTO. NOV. 4,1990 D.SAMSON

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

150 PROCEEDINGS OF TIlE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

might not be discovered until later in development when it is more costly to repair. The

knowledge-based approach is designed to detect conflicts and other inconsistencies (including

incompleteness and ambiguity) by encoding and applying rules that make use of classification­

based indexing tenns assigned to, and therefore descriptive of, requirements. A prototype has

been developed as a proof of concept [Samson, 1988] demonstrating that it is possible to

automate a requirements analyzer based on semantics of requirements statements as originally

defined, rather than syntax of more fonnalized representations later in the software development

cycle.

A second prototype was built for the U.S. Anny that not only analyzed requirements, as did

the previous prototype, but also served as a knowledge-based test plan generator [Samson,

199Oa]. This system analyzes requirements for their testability. It then matches each requirement

with appropriate metrics and test tools for the purpose of developing a preliminary test plan. For

example, a requirement which states a maximum acceptable response time to a user query must

be tested. To test whether the delivered software system meets this requirement, we might use a

stopwatch to measure the elapsed time for the system to respond to a query. Here the elapsed time

is the metric, and the stopwatch is the test tool.

A third project, completed for the NASA Jet Propulsion Laboratory during summer, 1990,

expanded the requirements classification scheme to cover system requirements (Le. hardware,

personnel, and procedures in addition to software) [Samson, 1990b]. This project leveraged

lessons learned from the previous two projects to develop a more flexible and useful classification

scheme.

DEVELOPING CLASSIFICATION SCHEMES FOR KNOWLEDGE-BASED SYSTEMS

The remainder of this paper will discuss development of the classification schemes beginning

with the NASA JPL one. This classification was developed from scratch, through analysis of

what CASE tools do with requirements, study of requirements analysis in textbooks, 19 years of

personal software engineering experience, indexing of over 100 requirements statements from

several software- based systems, and a classification exercise given to JPL test planners. Our

classification scheme at JPL, which we refer to as a requirements taxonomy, uses a faceted

structure with five facets. This faceted structure was inspired by one used successfully in software

reuse projects [Prieto-Diaz, 1987]. The five facets are:

Feature: the basic service described by the requirement

Object: the object supporting or facilitating the feature

Function: what is being done to, with, or by the feature

Temporality: temporal characteristic

Quality Attribute: non-functional, subjective characteristic

Figure 1 shows an excerpt from this taxonomy. The following requirement shows how

individual tenns were obtained by indexing actual requirements. This requirement is from a

ground data system, specifically, an earth-based receiving system which is capable of acquiring

radar signals and processing those signals into meaningful data products, such as images, and of

sorting, disseminating, and archiving data. The main component of the system is the database

containing images accompanied by descriptive information about these images.

DEVELOPMENT OF A REQUIREMENTS CLASSIFICATION SCHEME TORONTO, NOV. 4,1990

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP 151

Requirement: Load and maintain a directory that is searchiJblejrom a computer terminal.

Indexing:

• load and maintain indicates the FEATURE data management

• directory is a specific OBJEcr that facilitates data management

• searchable describes the search FUNCflON

• computer terminal indicates interactive TEMPORALITY

• there is no subjective characteristic for a QUALITY GOAL

As shown here, classification of individual requirements is accomplished through manual analysis
of nouns and verbs. This is supported by an engineering thesaurus [U.S. Dept of Defense. 1987]
and a rudimentary thesaurus for ground data systems. Automation of the requirements indexing
process will be essential for application of the classification scheme to be useful. We are currently
investigating ways to implement automated indexing.

Context dependency is an issue that needs to be handled in the process of indexing
requirements. Several examples include the word remove: "remove a file from a disk" is different

than "remove a disk from a drive" (in the first case the file is destroyed. in the second. the disk
still exists and can be re-inserted) and the word power: "computing power" refers to millions of

instructions per second. where "electrical power" refers to watts. For each of these terms.
different test strategies will prevail. For the ground data system example. domain knowledge is
applied to understand the use of particular words. For example. ground data system requirements
frequently describe a "product", which is actually an image of earth or another planet or star.

The first two classification schemes mentioned earlier in this paper both used a hierarchical
structure for indexing requirements (see excerpt in Figure 2). They were developed in much the

same way as the faceted scheme. without validation by experts. This scheme proved to be very
difficult to modify when indexing many requirements, where new classes were discovered as new

requirements were indexed. The hierarchical structure was very cumbersome, with many leaves
(over 200 for the U.S. Army version), requiring structural changes as requirements from different

systems were indexed.

CONCLUSION

The approach to characterizing software and system requirements through a classification
scheme seems to provide enough information to analyze requirements to detect potential
problems. The faceted structure bener accommodates a more diverse set of requirements than a
hierarchical structure. The next step in this work is to map combinations of terms to
implementation and testing strategies in order to produce systems that are less trouble-free in

implementation and can be better validated through testing.

TORONTO, NOV. 4,1990 D.SAMSON

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

152 PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

Figure 1. Faceted Requirements Taxonomy

Feature

budget
data acquisition
data communication

data compression
data management

data retrieval
documentation
format
imaging
input
media
output
protocol
scheduling
security
system status
transformation

Object

data
directory
documentation
entire system
extema1 interface
finnware
image record
hardware
monitor
operations
perfonnance
personnel
procedure
record
repon
request
schedule
software
standards
status
text
user interface

Function

archive
acquire
arithmetic
browse
catalog
connect
data transfer
decode
display
distribute
encode
enforce
insen
manage
predict
produce
recover
repon
restan
route
search
select
son
stanup
track
update

Temporality

dynamic
interactive
intersystem
near-realtime
parallel
prioritized
random
realtime
sequential
static
periodic

Quality Attribute

accessibility
adequacy
availability
compatibility
compliance
consistency
efficiency
interoperability
maintainability
ponability
reliability
timeliness

Figure 2. Excerpt from Hierarchical Requirements Taxonomy

I. Functional Requirements

A. Software Utility
1. Input events

a. data
b. format
c. message
d. source
e. timing
f. volume

2. Processing events

a. access
b. algorithm
c.application
d. condition detection

e. condition action
f. exception handling

3. Output events
a. data
b. data display
c. data storage
d.destination
e. format
f. timing

B. Software Performance

1. Static requirements

a operating system

b. number of terminals

c. number of users

d. number of files

e. number of records

f. data accuracy

2. Dynamic requirements

a. transaction rate
b. amount of data

c. error rate
d. response time
e. throughput

C. External Interface Requirements

1. Hardware
a CPU
b. I/O devices

2. Software
a data communications

b. database management systems

c. message processing

d. operating systems

e. other applications

3. Users
a dialog style
b. evaluation method

c. frequency
d.expenise

DEVELOPMENT OF A REQUIREMENTS CLASSIFICATION SCHEME TORONTO, NOV. 4, 1990

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICAnON RESEARCH WORKSHOP 153

REFERENCES

IEEE, Standard Glossary of Software Engineering Terminology, Institute of Electrical and Elec­
tronic Engineers, NY, 1983.

R. Prieto-Diaz and P. Freeman, "Classifying software for reusability," IEEE Software, pp. 6-16,

Jan 1987.

D. Samson, Automated Assistance for Software Requirements Definition, Ph.D. Dissertation,
George Mason University, Fairfax, VA, 1988.

D. Samson, "REQSPERT: Automated test planning from requirements," Proceedings 1st Interna­
tional Conference on Systems Integration, Morristown, NJ, Apr 1990a.

D. Samson, 'Test planning from system requirements: a classification approach," Information
Systems Protocyping and Evaluation, Jet Propulsion Laboratories, Pasadena, CA, JulI990b.

U.S. Dept. of Defense, Thesaurus ofEngineering and Scientific Terms, 1987.

-
TORONTO, NOV. 4, 1990 D.SAMSON

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

154 PROCEEDINGS OF THE 1ST ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

TORONTO, NOV. 4,1990

Samson, Dolly. (1990). Development of a requirements classification scheme for automated support of software
development. Proceedings of the 1st ASIS SIG/CR Classification Research Workshop, 149-154.
doi: 10.7152/acro.v1i1.12474

ISSN: 2324-9773

	Samson1
	Samson2
	Samson3
	Samson4
	Samson5
	Samson6

