Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,

101-114. doi:10.7152/acro.v3i1.12599
PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

Instance-Based Clustering for Databases’

Matthew Merzbacher
Wesley W. Chu?
Computer Science Department
University of California, Los Angeles
Los Angeles, CA 90025

We present a method for automatically clustering similar attribute values in a database system
spanning multiple domains. The method constructs a value abstraction hierarchy for each attribute
using rules that are derived from the database instance. The rules have a confidence and popularity
that combine to express the “usefulness” of the rule.

Attribute values are clustered if they are used as the premise for rules with the same consequence.
By iteratively applying the algorithm, a hierarchy of clusters can be found. The algorithm can be
improved by allowing domain expert direction during the clustering process.

1. INTRODUCTION

In a conventional database system, queries are answered with absolute certainty. If a query has no
exact answer, then the user's needs remain unsatisfied. A cooperative query answering (CQA)
system behaves like a conventional system when the query can be answered normally, but tries to

find an approximate answer when the original query condition cannot be matched exactly [4, 10].

Many information retrieval (IR) systems are like CQA systems because they return partially
matching objects to their queries. Such systems use a set of keywords as an abstract representation
of each underlying object. Queries are specified as a set of keywords which are then matched
against the abstract representations. If an abstraction matches the query set closely enough, then
the underlying document is retrieved.

Unlike IR systems, CQA systems can search the underlying data directly to determine the accuracy
of a candidate answer. Early CQA systems found approximate answers by evaluating a nearness
function for every tuple in the database. Although this approach works for small systems, it is too
inefficient for large applications.

Our approach to CQA, query modification, finds approximate answers by relaxing the query
conditions. When a query has no answer, its conditions are weakened to obtain a nearby, or

approximate answer. For example, consider a query about transporting ground vehicles for a
military application:

Find a large vehicle that can be packed and easily airlifted to Bizerte

The four conditions on this query are:

1. This work supported in part by DARPA contract N00174-91-C-0107
2. The authors may be reached at {matthew,wwc)@cs.ucla.edu

Pitusburgh, PA, October 25, 1992 101 Merzbacher & Chu

ISSN: 2324-9773

s a7 Saoa spe - PROCERBINGS OGP 172 5 AMS SRR L AU LHBI T RESE R H worksHop

101-114. doi:10.7152/acro.v3i1.12599

Ci: VEHICLE SIZE = large
C,: PACKABLE? = yes

C3: AIRLIFT = easy

C4: DESTINATION = Bizerte

If no such vehicle is available, the query modifier selects one or more attributes for relaxation and
replaces the value of that attribute with a nearby approximation. For example, VEHICLE SIZE can
be relaxed from “large” to allow medium-sized vehicles as well.

Tiny Small Medium Large

Figure 1: Abstraction Hierarchy for Vehicle Size

To restrict the search space after relaxation to a small set of possible answers, we employ an
abstraction mechanism that can discriminate likely candidates efficiently. Our principal data
structure, the value abstraction hierarchy groups like values for each attribute. Figure 1 shows the
classification of vehicle size for the airlift example. “Medium" and “Large" are clustered into “Bi g"
vehicles, while “Tiny" and “Small,” “Huge" and “Enormous" vehicles are clustered into “Little"
and “Oversized" respectively. The grouping can be recursive, as “Big" and “Little" are clustered
into “Normal sized" at the next level of the hierarchy.

There is an abstraction hierarchy for each attribute domain. Attributes are relaxed by finding their
value at the bottom of the appropriate hierarchy and replacing the value in the query with any of
the values in the bottom-most cluster of the original value. If searching one cluster in the hierarchy
is unsuccessful in yielding an answer, then the condition can be further relaxed by traversing up
another level in the hierarchy. Eventually, the query will be sufficiently relaxed to generate an
answer.

In this paper, we present a bottom up approach for constructing the abstraction hierarchy called
Panern-Based Knowledge Induction (PKI). PKI determines clusters based on rules derived from
the instance of the current database. The rules are not 100% certain; instead, they are rules-of-
thumb about the database, such as:

If VEHICLE SIZE = small then AIRLIFT = easy

Merzbacher & Chu 102 Piusburgh, PA, October 25, 1992

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,

101-114. doi:10.7152/acro.v3i1.12599 .
PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

Each rule has a popularity that measures how often the rule applies, and a confidence indicating
how well the rule “fits" the database. In certain cases, a more sophisticated rule with high
confidence can be derived by combining two simpler rules.

The PKI approach generates a set of useful rules which can then be used to construct the abstracticn
hierarchy by clustering the consequences of rules sharing a similar premise. For example, if the
three rules:

If VEHICLE SIZE = tiny then AIRLIFT = easy
If VEHICLE SIZE = small then AIRLIFT = easy
If VEHICLE SIZE = medium then AIRLIFT = easy

each had high confidence, then these three sizes would be clustered closely together. Each
invocation of the clustering algorithm adds a layer of abstraction to the hierarchy. By repeatedly
applying the algorithm, we will construct an set of abstraction hierarchies.

Considerable past effort has gone into the field of automatic classification, particularly in the IR
domain. Most of this has been concentrated on single-domain classifications, such as classifying
the symptoms in a medical expert system or the keywords in a book. The classification techniques
are usually a variant of the basic nearest-neighbor methods used in vision and pattern matching
algorithms [6, 3, 5] These algorithms classify items into sets based on how well the properties of
the items match the properties of the sets.

Unlike CQA systems where clustering is done for relaxation, the goal of clustering in information
retrieval is to improve retrieval efficiency. Database relations typically span several domains —
time, numeric information, names — and thus their tuples cannot be represented by a single set of
keywords. Further, the size of a tuple is relatively small compared with the size of a typical
document in an IR system. For these reasons, the clustering algorithms that work for single-domain
IR systems are inappropriate for databases containing thousands of values spanning multiple
domains.

This paper is organized as follows. We first introduce the example domain in detail. Then, after
reviewing terms and definitions, we present the Pattern-Based Knowledge Induction (PKI)
algorithm and show how it can be used to classify values into clusters. We conclude by presenting
an example taken from the transportation planning domain.

2. A TRANSPORTATION EXAMPLE

Our examples for this paper come from a military transportation database used to simulate
scenarios of troop and supply movement. The database is used by strategists to plan a time phased
force deployment and contains specifications of planes, ships and the cargo they carry. For clarity,
we have selected a portion of the database that includes the specifications of ground vehicles,
ranging from motorcycles and jeeps to full-sized trucks, but limited to non-hazardous cargo. We
focus on four attributes of the vehicle relation:

Pitsburgh, PA, October 25, 1992 103 Merzbacher & Chu

ISSN: 2324-9773

1R Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599 PROCEEDINGS (gF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

» airlift status — an indication of if the vehicle can be moved by air and takes three
values:

— easy: the vehicle can be moved by standard bulk transport.

— difficult: to carry this, the transporting airplane must be specially adapted, or the
cargo must be broken down for transport.

— impossible: the vehicle is too big for either the C-130 or C-141 cargo plane and must
be transported by ship.

* weight — the weight of the vehicle, in tons.
* size — the rough size of the vehicle
» pack status — can the vehicle be packaged for transport easily?

There are 67 vehicle types specified in the database, shown in Table 1 with the ID numbers
removed to save space.

AIRLIFT WEIGHET SIZE PACK | AIRLIFT WEIGHT SIZE PACK
impossible 11-30 Small No difficuls 11-30 Large No
easy under § Tiny No impossible 11-30 Medium No
difficult 11-30 Large No easy under § Tiny No
difficult under 8 Medium No impossible 11-30 Small No
difficult $-10 Medium No impossible 31-%0 Enormous No
difficult 11-30 Huge No easy uander § Medium Ne
impossidle 11-30 Medium No difficult 11-30 Large No
easy under 5 Small No immpossible 11-30 Small No
difficult under 5 Small Yes difficult 11-30 Medium No
easy under 5 Tiny Yes difficult 5-10 Medium No
impossible under § Tiny No impossible 11-30 Small No
difficult under 5 Medium Yes difficult 11-30 Large No
easy under § Medium Yes difficult under § Medium No
impossible 11-30 Medium No difficult 11-30 Small No
difficult under 5 Small No impossible 51-60 Large No
difficuls 13-30 Large No easy under § Tiny Yes
impossible 11-30 Medium Neo difficult 311-30 Large No
easy under 5 Tiny No impossible 51-60 Large No
difficult 11-30 Large No easy under § Tiny Yes
difficult 5-10 Large + No difficult under 5 Medium No
difficuls under § Small No impossible 11-30 Medium No
difficuls 11-30 Large No easy under § Tiny No
impossible 11-20 Small No difficuls 11-30 Large No
impossible 11-30 Small No difficuls 11-30 Medium No
easy under § Small No impossible 11-30 Small No
difficuls 131-30 Medium No easy under & Tiny No
impossible 51-60 Large No difficult 11-30 Large No
easy under 5 Tiny Yes difficult under 5 Tiny No
impossible 51-60 Large Ne difficult 11-30 Large Ne
eady under § Tiny Yes impossible 31-30 Epormous No
difficult 11-30 Huge Neo easy under $ Medium No
impossible under 5 Tiny No difficult 510 Medium No
impossible 11-30 Medium No difficult 11-30 Large No
easy under § Tiny No

Table 1: The database table VEHICLES

Merzbacher & Chu ‘ 104 Piusburgh, PA, October 25, 1992

s ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599

PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP |
3. PATTERN-BASED KNOWLEDGE INDUCTION (PKI)

In this section, we show how pattern-based knowledge induction systematically acquires rules
from database instances. The induced knowledge is then used to cluster semantically similar
values.

3.1. Definitions
In order to acquire generalized knowledge such as:

If VEHICLE SIZE = tiny then AIRLIFT = easy
rather than specific facts, such as:
Vehicle #XJ154 is small

we introduce the notion of a patrern [1] as the abstract representation for a group of database
instances with specified properties. We then represent relationships between data via the
relationships between patterns.

A pattern is defined by a query condition, such as:
VEHICLE SIZE = tiny or WEIGHT = 1130 tons
and the objects that satisfy the pattern condition are said to match the pattern.

Abstract Pattern Class: The set of objects matching a pattern form the Abstract Pattern
Class (APC) of that pattern. '

An APC is denoted by P(C) where P is its name and C is the pattern condition, and can be
abbreviated as P.

Rules relate two pattern classes — a premise and a consequence. A rule applies to the database if
the consequence usually follows when the premise is true. The usefulness of a rule can be measured
in terms of how often and how well the rule applies to the database. To provide quantitative values
for these properties, we introduce the notions of confidence and popularity, each defined in terms
of cardinality.

Cardinality: The cardinality of an APC named P is the number of distinct objects in P
and is denoted by IPI. For example, the pattern:

AIRLIFT = impossible

has a cardinality of twenty-one, since there are twenty-one tuples in the database that satisfy the
pattern condition.

Piusburgh, PA, October 25, 1992 105 Merzbacher & Chu

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v31.12599 pp OCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

A rule is an inferential relationship, represented by A — B, where A and B are patterns. A is the
premise and B is the consequence of a rule. The rules that hold in most cases are said to have high

confidence.
Inferential Confidence: Let A ->Bbearule. The confidence of the rule, denoted by
E(A — B), is defined as:
|P4 N Pg|
A-B)=2~2_-=2
&() A

and is in the range from 0 to 1. If the confidence of a rule is 1 then the rule is deterministic.

For example, assuming Pl = 100, IPgl = 320, and P4 N Pg! = 80, then £(A — B) = 80%, however,
E(B -> A) = 25%. Note that the confidences of rules for two opposite inference directions are
neither symmetric nor complementary, a major difference from traditional IR measures that
compare set overlap [7, 8, 9]

3.2. Combined Rules

Given rules A — B and B — C with certain confidences, the confidence of A — C depends on the
instances of the APCs defined on these conditions. Two rules may be composed using the following
formula:

Givenrules A — B and B — C, then A — C has confidence

|P4 0 Pel

{4~ C) =57

In addition to composition, forms for others compound rules (disjunction, conjunction, negation
and ranging) may be found in [1].

3.3. Popularity
Popularity is another important measure of a rule, indicating “how common" the rule is. Consider

the rule
ID= #XJ154 — SIZE = small

that has confidence of 100% but very little coverage relative to the total cardinality of VEHICLES.
Such a rule is not sufficiently popular for use in the knowledge base.

The coverage of a rule is measured by its popularity; that is, the percentage of its covered
cardinality in the total cardinality of the given universe. Popularity is a good indication of how well
a rule reduces the size of the database. 100% confident rules about one or two tuples are not
necessarily good, since the original tuples could have been used directly without the added
computational overhead of rule lookup.

Merzbacher & Chu 106 Piusburgh, PA, October 25, 1992

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for D /Cl ificati
Morzbacher, M & o, W (0 ing for Databases. 3rd ASIS SIG/CR Classification Research Workshop,

PROCEEDINGS OF 1HE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

A rule belongs to several universes. It applies to one or more relations in the database. For each of
those relations, the rule has a local popularity, indicating the percentage of tuples in the relation
where the premise applies. Further, the rule applies to the database as a whole, so it has a second
measure, the referential popularity, specifying the percentage of tuples in the entire database where
the premise applies.

Formally, let P4 and Pg be APCs used in the rule A — B that applies to a relation R, and IRl be
the number of tuples in Ry (cardinality). The local popularity of the rule over Ry is defined as

|Pal
A= B)=+——
an() i Rki
Further, if the cardinality of the entire database is [Di and there are r relations in the database, then
the referential popularity of the rule over the entire database is

1 r
1p(A — B) = 57 > nr.(A— B)
i ‘ k=1
The popularity of a rule is solely dependent on the premise of the rule and independent of the
consequence.

In the example transportation database, there is only one relation, so Ng = Mp for the rules. Since
they are the same in our examples, for the remainder of this paper, we will refer to this value simply

as 1.

3.4. Knowledge Induction via Atomic Patterns
Atomic Patterns: Atomic patterns are the patterns whose conditions are on a single
attribute, such as “SIZE = tiny" or “WEIGHT under 5tons".

For example, the atomic patterns of the AIRLIFT attribute are:

P(AIRLIFT = easy)
P(AIRLIFT = difficult)
P(AIRLIFT = impossible)

The algorithm to induce knowledge from a relation via atomic patterns follows directly:

Derive atomic patterns for each attribute in the relation
For every possible pair of atomic patterns @©h
consider I — J as a candidate rule
add rule if its popularity and confidence exceed threshold values

The popularity and confidence thresholds can be determined based on the database size and the

desired size of the final knowledge base. Typically values might require the local popularity t0
exceed 1% and the confidence to exceed 25% for the rule to be retained. Discarding low-confidence

Piusburgh, PA, October 25, 1992 107 Merzbacher & Chu

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-, teri r es. 3rd S SIG/CR Classification Research Workshop,
ot a0 5ottt o500 - PRO-EEDINGE OF THE Srd ASIS SYGICR CLASSTHUATION RESEARCH WORKSHOI

rules is dangerous, however, since those rules might be candidates for composition into more
sophisticated rules with higher confidence.

3.5. An Implementation Example
We now demonstrate our rule generation approach using the VEHICLES relation of Table 1. For
this example, we compare the confidences of the rules with premise patterns

P4(WEIGHT = 11-30 tons)
Pp(SIZE = large)

and consequent pattern

PAAIRLIFT) = difficult)
From the relation VEHICLES

P4l =311Pgl =17 IP4,NPZ=18 IPgnPZ4=13
From this, and the formula for confidence,

€ =0.58, 1 =.46 : WEIGHT = 11-30 tons — AIRLIFT = difficult
£ =0.76,n =.25 : SIZE =large — AIRLIFT = difficult

Based on the high confidence of these rules, and their shared consequence pattern, we consider the
more sophisticated rule (A A B) = Z and evaluate:

(WEIGHT = 11-30 tons and SIZE = large) —» AIRLFIT = difficult

Both enumeration from the database directly and the composition formula of section 3.2 yield £ =
1.00 for the proposed rule. Further, the cardinality of this rule is still high, since it applies to twelve
of the tuples in the database, son = 12/67 =.18

For the entire VEHICLES relation, there are 110 basic rules relating the four attributes. Almost half
of these rules have a confidence over 50% and twenty-two of the rules are deterministic (have
100% confidence). Only twelve of the rules have a cardinality of one - the remainder apply to at
least two tuples in the relation. Thus, the popularity of the rules is sufficient to justify their inclusion
in the knowledge base.

4. THE CLUSTERING ALGORITHM,
In this section, we show how to use the rules generated by PKI to construct an initial clustering.

The cluster algorithm groups attribute values which appear as premises in rules with the same

consequence based on the following rule:
Rule of Shared Consequence If two rules share a consequence and have the same
attribute as a premise (but different values), then those values are candidates for clustering.

Merzbacher & Chu 108 Pittsburgh, PA, October 25, 1992

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599

PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

For example, the rules

A =a; — B = b with confidence = §;
A =a; — B = b with confidence = £,

share a consequence and have the same attribute (A) as a premise with different values, a; and as.

4.1. The Clustering Correlation

Using the rule of shared consequence, the clustering correlation between two values is the product
of the confidences of the two rules, §; x &;. Since there can be several rules for each premise, The
overall clustering correlation between two attribute values, ¥, is the sum of the individual
correlations. That is, if a; and a; are values of attribute A, and there are m attributes By, B,, ...,
B,, in the relation. then

7(a1,a2)=Z£(A= ay — B;=b)x §{(A=ay— B; =b)

=1

If B = A, then the two terms in the summation are
é(A=a1-—->A=b)and§(A=a2—>A=b)

For the first term to be non-zero, a; must equal b; and for the second term to be non-zero, a; must
equal . Therefore, for the product of the terms to be non-zero,a; =a; =b. Buta; and a, are
distinct, leading to a contradiction. Therefore, the clustering correlation is zero if B = A. From this,
it follows that ¥ ranges between zero and m - 1. Thus, we divide by m-1 to normalize.

7(a1,a2) = v(a1,a2)

m-1
It follows that ¥ (a; ,a3) =Y (a; ,a;).
¥ measures the “closeness" of two attribute values, and can thus be used for binary clustering. More

general versions of ¥ are possible, but prove unnecessary, as will be shown in section 4.3, Table 2
shows values of ¥ for the size attribute in the VEHICLES relation.

Pittsburgh, PA, October 25, 1992 109 Merzbacher & Chu

ISSN: 2324-9773 S

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599 pROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

Ay Az F(a1,a2)
Huge Large .82
Huge Medium .63
Huge Small .62
Small Large 57
Large Medium 57
Small Medium .54
Small Enormous 49
Large Enormous 41
Small Tiny 41
Enormous Medium 40
Tiny Medium .39
Huge Enormous 33
Tiny Enormous .26
Large Tiny 24
Huge Tiny .24

Table 2: Values of Y for SIZE in VEHICLES.

4.2. The Binary Clustering Algorithm

We first present a binary clustering algorithm that uses ¥ values to identify clusters. The binary
clustering algorithm is a “greedy” algorithm, putting the two attribute values with the highest
overall ¥ together. Then, the two values with the next highest ¥ are clustered, but only if those
values have not already been clustered, and so on, until ¥ falls below a specified threshold value
or all values are clustered. This algorithm creates a forest of binary clusters.

Using a threshold of 0.5 yields the initial clustering of “Huge" and “Large,” since they have the
highest ¥ in Table 2. The next four highest ¥ values involve either “Huge" or “Large” and must be
ignored. Thus, the next allowable clustering is between “Small” and “Medium.” The last remaining
values, “Tiny" and “Enormous” do not get clustered, because their ¥ is well below the threshold.
Figure 2 shows the initial clusters.

Medium Small Huge Large

Figure 3: Second Iteration Binary Clustering with ¥ > 0.5.

Merzbacher & Chu 110 Pittsburgh, PA, October 25, 1992

11
ak ISSN: 2324-9773

e ~ Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classificati
; , . It
! 101-114. doi:10.7152/acro.v3i1.12599 siation Researeh Workshop.

PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

To construct the next level of the hierarchy, each of these clusters is now given a name. The Huge-
Large cluster might be called “Big,” while the Small-Medium cluster might be called “Little.” Now
the algorithm is rerun with “Small" and “Medium" replaced by “Little", and “Huge" and “Large”
replaced by “Big.” The new 7 values are used to generate the next layer of the hierarchy, which
turns out to only cluster “Big" and “Little" as shown in Figure 3.

Litde Big

Medium Small Huge Large

Figure 3: Second Iteration Binary Clustering withy > 0.5.

The process repeats, but none of the ¥ values are above the threshold. To complete the hierarchy,
all the individual pieces are linked at the top of the hierarchy, as shown in Figure 4. At this point,
“Tiny” and “Enormous” are linked in to the rest of the hierarchy.

Medium Small Huge Large

Figure 4: Final Binary Clustering Result with Y> 0.5.

Pittsburgh, PA, October 25, 1992 111 Merzbacher & Chu

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599 PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

4.3. The n-ary Clustering Algorithm

The binary clustering algorithm yields a binary tree hierarchy, except at the top level where all the
sub-trees are combined. If a more general n-ary hierarchy is desired, then the algorithm must be
extended. The obvious method to achieve n-ary clustering is to use a more sophisticated ¥ that
measures the correlation between an arbitrary n values instead of just two. However, evaluating
such a formula would require considering all possible combinations of values instead of all
possible pairs, and would thus be too inefficient.

Instead of modifying ¥ to allow n-ary clustering, we approximate the n-ary ¥ using a combination
of the binary values. Three values should be clustered together if the ¥ between each of the three is
above the threshold. That is, a;, a; and a3 are clustered together if Y(a;, a3), ¥(a;, a3), and Y(a;,a3)
are all above the threshold. In general, if all combinations of a set of attributes have ¥ above the
threshold, then the entire set are clustered. In the example, “Huge,” “Large,” “Small,” and
“Medium” can be clustered together on the first pass, since any pair of these four have a Y above
the threshold. The cluster of four is given a single label, and the algorithm is rerun yielding the
cluster shown in Figure 5.

Tiny Enormous

Medium Small Huge Large

Figure 5: Final n-ary Clustering with ¥> 0.5.

The algorithm generates hierarchies with no overlapping clusterings. In some cases, values are

allowed to belong to more than one cluster. In such cases, the selection criterion must again be
modified. All pairs with Yabove the threshold are clustered, not just the ones belonging to a setas
above. Sets of mutually clustered values can be combined as above, but a value may belong to more |
than one such set. ‘

4.4 Directed Clustering

The final modification to the clustering algorithm allows expert directed rule selection and use. In
the example, each attribute was weighted equally for classification. The binary attribute, ,
PACKABLE, was as important as SIZE and WEIGHT. In general, different attributes should have

Merzbacher & Chu 112 Pittsburgh, PA, October 25,1992

| T
1118 ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Cl i
Morzbacher, M & o, W (0 ustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,

PROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

different impact on the final clustering. Suppose we were clustering a new attribute, MPG, the gas

mileage of each vehicle. For that attribute, CARGO STA i i
mileage of eac v TUS is not important, but SIZE and

To allow expert control over the selection of attributes for clusterin i i

. — . . £, We propose to assi
to each attribute. Let 7 be the normalized weighted sum of the rules. Let wg;(A) be minw‘:‘i:;i‘:ts
assigned to attribute B; when clustering attribute A, then,

Fu(a1,02) = Vv}mzwsi(-‘t) xé(a=06,—Bi=b)x{(A=a2—B;i=b)

=1
where

W) =3 wn(a)

i=1

A database expert can now control the behavior of the algorithm by assigning different weights for
each attribute.

5. DISCUSSION

Currently, the clustering algorithm works well for discrete values. It would not be suitable,
however, for continuous domains, such as numeric values. In the example, the numbers of the
WEIGHT attribute have already been pre-clustered into ranges. In general, clustering of
continuous numeric domains is pointless, since the clusterings fall naturally based on the data.
However, if clustering of numeric domains is necessary, the preprocessing of the domains into
small ranges based on application context will vastly improve the performance of the algorithm.

The PKI algorithm for rule detection is exponential on the number of attribute values. Thus, the
algorithm does not scale well to large domains. Several techniques can be used to reduce the
complexity of the problem. First, the pre-clustering of attributes, as described above, will decrease
the number of values in numeric domains and thus reduce the number of atomic patterns and
potential rules. Pre-clustering can also help in non-numeric domains, if the expert makes an initial
pass through the database and selects values which are closely related. The domain expert can also
be consulted to dictate which pairs of attributes are most likely to generate “useful” rules and
further direct the PKI algorithm and reduce the computational complexity. For example, the
domain expert, knowing that color and m.p.g. are independent, can direct the rule finder to ignore
that possibility for rule generation. Further, for very large database, statistical sampling methods
can be used for rule gathering. Instead of considering all tuples when evaluating arule, 2 randomly
selected sample of the tuples in the relation can be used to estimate the rule's confidence and

popularity.

Pitsburgh, PA, October 25, 1992 113 Merzbacher & Chu

ISSN: 2324-9773

Merzbacher, M., & Chu, W. (1992). Instance-Based Clustering for Databases. 3rd ASIS SIG/CR Classification Research Workshop,
101-114. doi:10.7152/acro.v3i1.12599 pROCEEDINGS OF THE 3rd ASIS SIG/CR CLASSIFICATION RESEARCH WORKSHOP

6. CONCLUSIONS

In this paper, we have presented a Pattern-Based Knowledge Induction mechanism that generates
rules relating attribute values in a relational database. The rules can then be used to cluster attribute
values and construct abstraction hierarchies suitable for use with cooperative query answering
systems such as CoBase [2]. The algorithm works well for discrete non-numeric domains and can
use semantics and domain expert direction for pre-clustering to reduce computational complexity.
The expert can also add weights that indicate the relevance of certain attributes, thus tailoring the
hierarchy based on the semantics of a specific application.

REFERENCES

[1]1 Q. Chen, W. Chu, and R. Lee. Pattern-based knowledge induction from databases. In Database
Systems for Next Generation Applications. World Science Publishing Co., 1992.

[2] W. W. Chu, Q. Chen, and R. Lee. Cooperative query answering via type abstraction hierarchy.
In S.M. Deen, editor, Cooperating Knowledge Based Systems. North-Holland, Elsevier
Science Publishing Co., Inc., 1991.

[3] T. M. Cover and P. E. Hart. Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, IT-13(1):21--27, January 1967.

[4] Frederic Cuppers and Robert Demoloube. Cooperative answering: a methodology to provide
intelligent access to databases. In Proc. 2nd International Conference on Expert Database
Systems, Virginia, USA, 1988.

[5] S. A. Dudani. The distance-weighted k-nearest neighbor rule. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-6(4):325--327, April 1976.

[6] Evelyn Fix and J. L. Hodges, Jr. Discriminatory analysis: Nonparametric discrimination:
Consistency properties. Technical Report 21-49-004 no. 11, USAF School of Aviation
Medicine, 1951.

[7] L. Goodman and W. Kruskal. Measures of association for cross-classifications. Journal of the
American Statistical Association, 49:732--764, 1954,

[8] L. Goodman and W. Kruskal. Measures of association for cross-classification ii: Further
discussions and references. Journal of the American Statistical Association, 54:123--163,
1959.

[9] J. L. Kuhns. The continuum of coefficients of association. In Stevens et al., editors, Statistical
Association Methods for Mechanised Documentation, pages 33--39. National Bureau of
Standards, Washington, 1965.

[10] J. Minker, G.A. Wilson, and B.H. Zimmerman. Query expansion by the addition of clustered
terms for a document retrieval system. Information Storage and Retrieval, 8:329--348,
1972.

Merzbacher & Chu 114 Pittsburgh, PA, October 25,1992

ISSN: 2324-9773 J

