Machine translation and author keywords: A viable search strategy for scholars with limited English proficiency?
DOI:
https://doi.org/10.7152/acro.v29i1.15455Keywords:
Machine translation, author keywords, information retrieval, knowledge organization systemsAbstract
Author keywords are valuable for indexing articles and for information retrieval (IR). Most scientific literature is published in English. Can machine translation (MT) help researchers with limited English proficiency to search for information? We used two MT systems (Google Translate, DeepL Translator) to translate into English 71 Spanish keywords and 43 French keywords from articles in the domain of Library and Information Science. We then used the English translations to search the Library, Information Science and Technology Abstracts (LISTA) database. Half of the translated keywords returned relevant results. Of the half that did not, 34% were well translated but did not align with LISTA descriptors. Translation-related problems stemming from orthographic variation, synonymy, differing syntactic preferences, and semantic field coverage interfered with IR in just 16% of cases. Some of the MT errors are relatively “predictable” and if knowledge organization systems could be augmented to deal with them, then MT may prove even more useful for searching.Downloads
Published
2019-06-28
Issue
Section
Articles
License
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).