Encoding Multilingual Knowledge Systems in the Digital Age: the Getty Vocabularies
Murtha Baca: MBaca@getty.edu
Melissa Gill: Mgill@getty.edu
Getty Research Institute 1200 Getty Center Drive, Los Angeles, CA 90049-1679

Abstract
This paper gives an overview of the history, development, and structure of the electronic thesauri
produced and maintained by the Getty Research Institute (GRI). We describe the evolution of the
Art & Architecture Thesaurus (AAT®), the Getty Thesaurus of Geographic Names (TGN®), and
the Union List of Artist Names (ULAN®) as multilingual, cross-cultural knowledge organization
systems (KOS); the factors that make them unique; and their potential, when expressed as
Linked Open Data (LOD) to play a key role in the Semantic Web.

1. Introduction

In our current digitally entrenched epoch, we have experienced an overwhelming growth
of information resources that are purportedly available to anyone with Internet access, but are
actually daunting if not impossible to find and navigate in the vast universe of the World Wide
Web. Libraries, archives, and museums, in an effort to make digitized and born-digital content
globally accessible, have embraced the emergent trend of unified online discovery systems to
facilitate cross-repository searching of heterogeneous collections (Long and Schonfeld 2014, 46).
Federated resources such as ARTstor, the Google Cultural Institute, the Digital Public Library of
America, and Europeana¹ aggregate descriptive metadata and digital surrogates representing
diverse repositories, languages, and cultures. In large, varied data resources of this kind, keyword
searching is woefully inadequate for comprehensive information retrieval (Bates, 1998, 1185). If
they are to be truly available and effective, these systems must reconcile the challenges inherent
in international cultural heritage domain knowledge, which by its very nature is multilingual,

¹Europeana is a project to make Europe's cultural heritage available online and to give visibility to the efforts of cultural heritage institutions to make their assets available online.
multicultural, interdisciplinary, and manifested in diverse formats. (Hyvönen 2010, 5). We believe that controlled vocabularies, as knowledge organization systems (KOS) that achieve consistency and provide a wide range of access points for resource description and enhanced precision and recall in information retrieval, will play a key role in an increasingly multicultural and multilingual information ecosystem. The controlled vocabularies produced by the Getty Research Institute (GRI) are multilingual, semantically structured thesauri that can be powerful tools for enriching knowledge and providing meaningful links for cultural heritage information resources. This paper will provide an overview of the development and structure of the Getty vocabularies, their recent release as Linked Open Data (LOD), and their potential role in the Semantic Web. For the sake of clarity, we have included a brief glossary at the end of this paper that defines key concepts.

2. The Getty Vocabularies: Overview and Core Data Structure

In response to the cultural heritage documentation community’s need for controlled vocabularies specifically relating to art, architecture, and other material culture (for which authority files such as the Library of Congress Subject Headings and Thesaurus for Graphic Materials were useful, but not fully adequate), in the 1980s the J. Paul Getty Trust began a program to develop thesauri for the cultural heritage domain. From the beginning, the Getty sought partnerships with users and other stakeholders, including art and architectural historians, architects, librarians, visual resource curators, archivists, museum specialists, and specialists in thesaurus construction, with the goal of creating resources applicable to the diverse interests and requirements that would allow cross-collection retrieval. The first thesaurus developed under the Getty’s aegis was the Art & Architecture Thesaurus® (AAT), which includes terms,
descriptions, and other information for generic concepts related to art, architecture, conservation, archaeology, and other cultural heritage. Over time, the work of the Getty Vocabulary Program was broadened to include a structured vocabulary containing names and biographical information for artists, patrons, and other agents in the cultural realm, resulting in the *Union List of Artist Names®* (ULAN). The third Getty vocabulary was a thesaurus containing names and other information for inhabited places, geographic features, and archaeological sites: the *Getty Thesaurus of Geographic Names®* (TGN). The Getty vocabularies are faceted thesauri in compliance with ISO and NISO standards for thesaurus construction. The first two editions of the AAT (1990, 1994) and the first edition of the ULAN (1994) were released in printed volumes. As information technology evolved and the Internet burgeoned, the AAT, ULAN, and TGN were published through an online search interface, and also made available as full datasets for licensing by libraries and other cultural institutions, as well as by commercial entities such as collection management software vendors. Currently, the licensed, full datasets in relational tables and XML formats are released annually, with data updated every two weeks in APIs (application programming interfaces) and in the online search interface. Also, the Getty vocabularies are now available as Linked Open Data releases, which are also updated every two weeks.

The Getty vocabularies all share a core data structure: they map to a common schema, and are interconnected technically as well as semantically. Unlike the Library of Congress authorities, the AAT, ULAN, and TGN are true thesauri, not lists of subject headings. Unique concepts in each vocabulary are represented by records, which contain terms or names, notes, dates, bibliography, and other information about the concept. One preferred term or descriptor is used as a default term to represent the concept in online displays. Terms may comprise a single word (e.g., “Baroque”); other terms may be “bound terms” (e.g., “rose window”), which are
multiple-word terms expressing a single, unique concept. The terms and records are explicitly and semantically linked through the equivalence, hierarchical, and associative relationships that are inherent in the structure of a thesaurus. For example, in the AAT, the record for the object known as a “rhyton,” a distinctive drinking vessel often shaped like an animal horn used in Ancient Greece and the Middle East, includes equivalence relationships for additional terms such as the plural “rhyta,” and variant terms “rheons,” “rhythons,” and “ritons.” The concept record has a hierarchical relationship under the broader parent term “drinking vessels.” It is distinguished by an associative relationship to the related but different object “stirrup cup” (Figure 1). The vocabularies’ polyhierarchical structure also allows for concepts to be linked to multiple parents, thus one concept may appear in multiple hierarchical views (Harpring 2013, 42) (Figure 2).

The temporal nature of cultural information, including changes in nomenclature and interpretations of meaning over time, is represented in the vocabularies through the aggregation of current as well as historical terminology. For example, in the Getty Thesaurus of Geographic Names®, the record for the Indian city of Kolkata designates the transliterated Bengali name “Kolkata,” approved in 1999, as the preferred name along with the historical names (flagged as such within the database) “Calcutta,” “Fort William,” and “Kalikāṭā” (Figure 3). Vocabularies that aggregate variant terminology referring to a single concept can significantly enhance both the precision and recall of online searches by leading users to relevant resources that they would not have otherwise found without the use of the additional access points provided by the vocabulary. The Getty vocabularies cluster together historical and other linguistic variants relating to a single concept, which when applied to a variety of collection metadata can create additional access points for users in search and retrieval.
3. Issues and Challenges in Creating Multilingual Thesauri

The Getty vocabularies grow through contributions from institutions and organizations from the international knowledge organization community, including repositories of art and cultural heritage as well as projects concerned with indexing and cataloging art and architecture. Major contributing organizations that have undertaken complete translations of the AAT include the Academia Sinica in Taipei; the State Museums of Berlin; the Centro de Documentación de Bienes Patrimoniales (a subdivision of the Dirección de Bibliotecas, Archivos y Museos, known as DIBAM) of Chile; and the Netherlands Institute for Art History (RKD). Partnerships with other cultural organizations greatly enhance the development of multilingual terminology, through large-scale translation projects as well as smaller batch contributions. The Getty vocabularies contain multilingual equivalents for generic concepts, such as liturgical “reliquaries” [“reliquiari” (Italian)], “聖物箱” (Chinese-traditional), “shèng wù xiāng” (Chinese-transliterated Hanyu Pinyin), “reliquiaria” (Dutch)] as well as proper names, such as for the Renaissance Italian artist “Leonardo da Vinci” [“Léonard de Vinci” (French) and “レオナルド・ダ・ヴィンチ” (Japanese)]. The language of the term is often labeled with a language flag. Multilingual controlled vocabularies enrich descriptive metadata, provide additional important access points, and enhance online search and retrieval for collections of metadata encoded in different languages (Harpring 2013, 178).

The process of translating the Getty’s Art & Architecture Thesaurus® into a target language is labor-intensive, requiring teams of experts in language, content, and thesaurus construction. When the members of translation project are also attempting to map their legacy local vocabularies to the existing AAT, occasionally they discover that a required concept is missing in the AAT and a new concept must be submitted for inclusion. For example, the
Netherlands Institute for Art History, which has done a complete Dutch translation of the AAT, contributed a new record for “besloten hofjes,” a type of low relief or assemblage developed in the southern Netherlands during the Middle Ages (Figure 4). The addition of new concepts to the AAT may result in the creation of entirely new hierarchical branches that must be integrated into existing hierarchies or facets. For example, the Academia Sinica, which is responsible for the Chinese AAT translation project, recently introduced eight new concepts for Chinese festivals; the inclusion of these new concepts necessitated the creation of a hierarchical level for “cultural holidays,” which was placed under the existing “holidays” in the AAT’s “Activities” facet. These types of translation projects promote multicultural documentation and access with the integration of new concepts and terminology into an existing, English-language-centric controlled vocabulary.

Even in cultures that share a common language, the same term may represent different concepts. For example, the AAT distinguishes between the term “retablo” used in Spain to denote a large altar screen or appendage (“reredos” or “retable” in English) versus the kind of small devotional panel painting called a “retablo” in Latin America (Baca 2014, 121-124). This is an example of why the unique numeric IDs used by the Getty vocabularies are so important—they uniquely identify the concept, even if the terms representing the concept are homographs. Other resources, such as the Virtual International Authority File (VIAF²), also use unique numeric IDs. In an increasingly linked retrieval environment, if cultural heritage resources have included the unique numeric IDs rather than simply the text of an AAT or other indexing term, search portals will be able to better utilize true semantic retrieval.

4. What Makes the Getty Vocabularies Unique?
As mentioned above, the AAT, ULAN, and TGN are true thesauri, with all the power of the equivalence, hierarchical, and associative relationships. Unlike subject headings, or traditional dictionaries, the Getty vocabularies encode one unique concept per record, thus disambiguating homographs and avoiding false matches when users search on related or even identical terms. For example, the term “landscape” can represent two distinct concepts, a built environment and a visual representation of the environment; these concepts are represented as separate, distinct records with terms that are homographs in the AAT. In this case, the records are linked as “related concepts,” and disambiguated by the associative relationship type “distinguished from,” in addition to the use of qualifiers “environments” and “representations.” In general, however, homographs do not have an associative relationship simply because the terms are spelled the same; there must be a direct relationship between the concepts. For example, the records for “drum” may refer to a musical instrument, while a second record refers to “drum” as a component of a column, while a third record refers to “drum” as the base for a dome. These records are not linked by associative relationships in the AAT, although they would be listed under a single entry in a dictionary.

Qualifiers, scope notes, and the placement of an AAT concept in the context of the hierarchy help disambiguate terms for users. For machines, it is the unique, persistent ID of every concept that identifies the concept; even if the terms change or the hierarchical position is altered, the ID remains.

The equivalence, associative, and hierarchical relationships encoded in the AAT, ULAN, and TGN make each vocabulary semantically and technically linked within itself; for example, in the ULAN the record for “Michelangelo Buonarroti” contains associative relationship links to the records for people to whom this artist was associated (Figure 5). The vocabularies are also
linked to each other; for example, the ULAN record for “Michelangelo Buonarroti” also contains links to the TGN records for Rome and Florence, places where the artist was active (Figure 6).

The Getty vocabularies also contain a wealth of bibliographic information. Each name or term in a vocabulary record is linked to one or more contributors, as well as to bibliographic sources that serve as literary warrant for usage of the term, illustrating the academic authoritativeness and research value of the vocabularies. The data structure and basic principles under which the vocabularies are constructed and maintained emphasize multilinguality and multiculturality. They are compiled through contributions over time, constantly growing with the addition of new terms and concepts. Their growth is inherently “social,” in that they are built up primarily from contributions from trusted partner institutions (but not “crowd sourced” via contributions from the general public, which would significantly reduce their authoritativeness). Last but not least, the Getty vocabularies are freely available as reference and cataloging tools on the GRI’s website, and now in the form of Linked Open Data as part of the Getty’s Open Content program, which is aimed at making not only high-resolution images and associated descriptive metadata, but also large research datasets, available without restrictions.3

5. Linked Open Data and the Getty Vocabularies: Linking and Enriching Cultural Heritage Information

The Getty vocabularies are multifunctional; they function as knowledge bases, data value standards for cataloging and resource description, and tools for enhancing online search and retrieval. Now they can be exploited in new ways for retrieval and discovery with the release of the AAT, TGN, and ULAN as Linked Open Data (LOD). As discussed by Zeng and Chan (2004, 370), LOD represents a shift toward networked knowledge organization systems (NKOS)
in the age of the Internet. The Semantic Web, as an extension of the World Wide Web, aims to add a semantic layer of machine-readable, standardized data into the Web’s existing architecture (Berners-Lee et al. 2001). Making the vocabularies available as openly accessible linked data is in keeping with the Getty’s Open Content policy. The time was also right due to the growing number of museum and library datasets being published as Linked Open Data. The AAT and TGN were released as LOD in 2014 and the ULAN as of April 2015. All three vocabularies are published under the Open Data Commons Attribution License (ODC-By) v1.0.

As Linked Open Data, the Getty vocabularies are expressed as structured and openly reusable machine-readable data that information systems can interpret and use to create semantically relevant relationships across other linked datasets. The data are described using the principles of the Resource Description Framework (RDF), a standard model for data interchange on the web that employs uniform resource identifiers (URIs) to identify the name and location of resources (any piece of data in the vocabularies) and expresses entities and the relationships between them as triples, or subject-predicate-object statements (Harpring 2013, 233), thus creating a semantic network of information. The Getty Vocabulary Program’s LOD datasets are machine accessible at http://vocab.getty.edu/, with sample data and full documentation on how implementers can access and utilize the data, and they are available from the program’s website at http://www.getty.edu/research/tools/vocabularies/. The Getty’s LOD datasets are downloadable in several RDF-based formats: Turtle, JSON, RDF/XML, and N-Triples.

Wherever possible, the Getty technical staff expressed the data as LOD utilizing a set of standard ontologies—Simple Knowledge Organization System (SKOS) and SKOS-XL for representing thesauri information, Dublin Core (DC) for common properties, W3C Geo Ontology (WGS) for geographic information, Friends of Friends (FOAF) and Bibliographic

Ontology (BIBO) for sources and contributors, Provenance (PROV) for revision history, and RDF, RDFS, OWL and XSD for system properties. For data that could not be mapped to an existing standard ontology, the Getty technical team developed a specific ontology, called GVP. The ontology stack taken as a whole creates a complete semantic representation of Getty vocabulary data, which is especially rich, deep, and multifaceted. Full documentation on the vocabularies’ semantic representation is available at http://vocab.getty.edu/doc/.

Expressing the complex intricacies of the AAT’s multilingual translations as Linked Open Data posed a challenging undertaking for the Getty technical team and external collaborators. Language translations of concepts in the AAT contain loan terms, or words borrowed from other languages that become naturalized in the borrowing language (National Information Standards Organization and American National Standards Institute 2010, 32). For example, the French concept, “trompe-l’oeil,” (literally, “deceive the eye”), used to describe a two-dimensional image rendered to appear as occupying three-dimensional space, is a loan word found in English, in addition to the Dutch and Spanish translations that have been contributed to the AAT by partner institutions. The four languages are flagged for the same term “trompe-l’oeil.” This is problematic for the Semantic Web, which expects each term to be unique with an individual identifier. The Getty technical team had to resolve how to encode the language flags so that information systems could interpret them as discrete entities, while also making it clear that the loan words are identical, in their spelling and meaning, across several languages. This was resolved by representing each instance of the term as an individual URI composed of a core numeric identifier and the IANA (Internet Assigned Numbers Authority) language code. With the example “trompe-l’oeil,” the term is expressed as four separate URIs, each containing the same identifier (1000056506) followed by the language code: aat_term:1000056506-fr,
This allows information systems to read language codes, which can be used for metadata enrichment and to enhance multilingual information services.

The Getty LOD project capitalizes on the vocabularies’ existing semantic structure. Although the AAT, TGN, and ULAN have always been linked together conceptually, technical mapping required comprehensive harmonization across the three vocabularies. For example, Place Type list values in the TGN and Nationality/Culture/Race/Ethnicity and Roles lists values in the ULAN were mapped to existing concepts in the AAT, or if those concepts were nonexistent, they were added as new concepts. The “Languages” controlled list values found in all three vocabularies were also added to the existing “languages and writing systems” hierarchy in the AAT. ISO 639 alpha-2 and alpha-3 codes were also added as variant descriptors; for example, the AAT record for the Romance language “Spanish” includes the ISO codes “es” and “spa” as variant terms. The conceptual links established across the Getty vocabularies are now tangibly linked within the vocabularies’ data and as LOD.

The linked data cloud has experienced exponential growth since Tim Berners-Lee first wrote about the Semantic Web in 2001. The evolution of the Linked Open Data Cloud diagram exemplifies the escalating presence of published linked datasets on the Web. In 2007, only twelve linked open datasets existed; by 2011 this number had grown to 295, and as of April 2014, 570 datasets are linked and published in the cloud, including the AAT (Figure 7a & 7b). Many libraries, archives, and museums are now proceeding to structure and publish their collection information as machine-readable, linked datasets for better integration into the Web and re-use by other organizations. Knowledge organization systems, described as “value vocabularies” in the Semantic Web domain, play a crucial role in the success of Linked Data by
acting as “hubs,” using HTTP URIs to connect concepts, names, and works across datasets from different communities and domains (Bermes 2011, 7; Hooland and Verborgh 2011, 224).

Enhancing cultural heritage metadata with the URIs from relevant controlled vocabularies and authorities expressed as Linked Open Data is essential if the Semantic Web is to fulfill its promise of creating an interconnected, discoverable information ecosystem.

The growing presence of online search systems for cultural heritage information, and more recently cross-domain and cross-cultural information portals, highlights the importance of multilingual access in a networked, global environment. Multilingual access in information systems involves three aspects: multilingual interfaces, multilingual search and browsing, and multilingual result display and translation. (Stiller et al. 2012, 4). Multilingual value vocabularies hold the potential to enrich existing metadata and support the search and browsing of resources described in different languages. Cultural institutions and repositories working with LOD stress that linked, open, interoperable, and multilingual vocabularies are of paramount importance for augmenting semantic and multilingual searching (Charles et al. 2014, 3). The Rijksmuseum, for example, first began working with Linked Open Data to support multilingual access to its collections online, intending to integrate and exploit the multilingual labels found in semantic vocabularies (Dijkshoorn et al. 2014, 5). At the time of this writing, there are few examples available that demonstrate comprehensive semantic and multilingual search as supported by linked data vocabularies. Europeana’s recent leveraging of the AAT as LOD in their portal search illustrates how NKOS can enrich metadata records and augment search and retrieval across multilingual datasets.

Europeana, an online information portal, provides access to millions of cultural heritage resources by aggregating metadata from museums, libraries, and archives across Europe.
Metadata from contributing institutions is linguistically diverse and hence poses several multilingual challenges, such as how to integrate search across multiple languages and ensure that users can interpret and understand metadata records retrieved in unfamiliar languages (Charles et al. 2014, 3). Europeana relies on knowledge organization systems to resolve multilingual issues by using an internal metadata enrichment tool to leverage value vocabularies available in the linked data cloud. For metadata records with encoded AAT URIs (from the Rijksmuseum, Museo Galileo, Erfgoodplus.be, and institutions forming the Partage Plus project) the enrichment tool makes use of variant terminology, language labels, and semantic data from the Getty’s Linked Data service (Charles and Devarenne 2014). The auto-generated labels are processed by the Europeana Data Model (EDM), which seamlessly integrates this information into the system’s semantic layer for enhanced search and retrieval. The Europeana metadata record for Johannes Vermeer’s oil painting The Milkmaid (Het melkmeisje) at the Rijksmuseum includes “auto-generated” tags from the AAT, which were populated from URIs present in the Type and Format fields. The object type “easel painting” displays the multilingual translations as human-readable labels: [Staffeleibild] (de); [peintures de chevalet] (fr); [easel paintings (paintings by form)] (en); [pinturas de caballette] (es); [schilderijen] (nl). Enriching collection metadata with machine-readable URIs from a multilingual thesaurus such as the AAT produces comprehensive search results across different languages, independent of the object record’s native language. The Dutch object record is retrieved whether searching with the German descriptor “Staffeleibild” or the French descriptor “peintures de chevalet,” therefore facilitating greater resource recall. The AAT’s encoded IANA language values are also utilized to benefit metadata display. For example, when selecting “Français” for the web display language setting, the system will read the encoded language labels and automatically generate the French terms
“peinture de chevalet” under Type, and “peinture à l’huile” under Format. Europeana’s usage of the Linked Open Data version of the AAT in their search illustrates how multilingual and interoperable NKOS can be incorporated into complex data repositories and utilized for enhanced search and retrieval. Although this application is limited to existing AAT URIs in contributor data, this example illustrates the potential for developing comprehensive multilingual knowledge management services.

7. Conclusion

The Semantic Web offers the promise of universal, unfettered access to a vast array of information in different formats and languages, and from different cultures. Metadata is an important component in the deployment and success of the Semantic Web (Greenberg, Sutton, and Campbell 2003, 7). At the time of this writing, the adoption of Linked Data technologies by libraries, archives, and museums is still in the preliminary stages of development. A critical mass of information is necessary to exploit the full potential of cross-domain semantic search, and libraries, archives, and museums have only relatively recently begun to transform and release their collection metadata as LOD. Furthermore, applications for interpreting and displaying linked data as human-readable information are still needed for users to fully benefit from semantic technologies. Several cultural heritage institutions and consortia, including the Mellon-funded Research Space Project, the American Art Collective, and the Getty, are moving forward to explore conceptualizing and building such tools. Now that the Getty vocabularies are available as LOD, major purveyors of cultural information such as OCLC and the Google Cultural Institute have approached the Getty to inquire about how these rich multilingual thesauri can be incorporated with other datasets and technologies. It is clear that multilingual, semantically
structured thesauri and authorities are needed now more than ever. We believe that controlled vocabularies such as the VIAF and the thesauri produced by the Getty Research Institute will play a pivotal role in the emerging universe of semantically linked information resources.

Glossary

Concept: a discrete entity or idea; in an ISO- and NISO-compliant thesaurus, each record represents a single concept or “subject.” In the Getty thesauri, a concept may represent an agent (an individual person or corporate body), a place, an object type, an abstract concept, and so on.

Linked data: semantically structured datasets that are machine-readable and processible.

Linked open data (LOD): linked data published on the web with an open license for use, re-use and re-distribution.

Ontology: a formal machine-readable specification in which entities, attributes, and their interrelationships are explicitly defined and represent a particular domain of knowledge or discourse. Identifying an existing ontology or ontologies, or developing an appropriate ontology, is a necessary first step when transforming datasets into LOD.

Term: a word or group of words denoting a single concept in a controlled vocabulary.

Thesaurus: a monolingual or multilingual controlled vocabulary that is explicitly structured to encode the equivalence, hierarchical, and associative relationships between concepts.

Value vocabulary: defined within the Semantic Web domain as semantically structured and machine-readable data value standards (authority files, thesauri, subject headings, and controlled lists) that are used to populate metadata elements.

Figures

Figure 1. The *Art & Architecture Thesaurus®* web display for “rhyta” illustrates (1) equivalence, (2) hierarchical, and (3) associative relationships.
Figure 2. The Art & Architecture Thesaurus® web display for “rhyta” illustrates polyhierarchical relationships.

Figure 3. The Union list of Artist Names® web display for “Calcutta” illustrates the clustering of historical and contemporary terminology associated with the same concept (in this case, a place).
Figure 4. The *Art & Architecture Thesaurus®* web display for “besloten hofjes” illustrates the linguistic variants added by the partner institutions.
Figure 5. The *Union list of Artist Names*® web display for “Michelangelo Buonarroti” illustrates associative links to the various individuals to whom this artist was associated, also represented by unique records in the same thesaurus.

![Related People or Corporate Bodies](image1)

Related People or Corporate Bodies:
- apprentice of Ghirlandaio, Domenico
- assisted by Amadori, Francesco
- assisted by Duca, Giacomo del
- assisted by Mini, Antonio
- assisted by Torni, Jacopo
- associated with Buoninsegni, Domenico
- collaborated with Venusti, Marcellino
- colleague of Granacci, Francesco
- patron was Clement VII, Pope
- patron was Julius II, Pope
- patron was Medici, Lorenzo de’
- patron was Paul III, Pope
- student of Bertoaldo di Giovanni
- teacher of Condini, Ascanio
- teacher of Duccio, Giacomo del
- teacher of Piero d’Argenta
- teacher of Vasari, Giorgio
- uncle/aunt of Buonarroti, Leonardo
- uncle/aunt of Buonarroti, Michelangelo, II the younger man was the great nephew of the artist Michelangelo
- worked with Dosio, Giovanni Antonio
- worked with Rosselli, Pietro di Giacomo

Birth and Death Places:
- Born: Caprese Michelangelo (Arezzo province, Tuscany, Italy) (inhabited place)
- Died: Rome (Roma province, Latium, Italy) (inhabited place)

Events:
- active: Florence (Firenze province, Tuscany, Italy) (inhabited place)
- active: 1534-1564 Rome (Roma province, Latium, Italy) (inhabited place)

Figure 6. The *Union list of Artist Names*® web display for “Michelangelo Buonarroti” illustrates links to the *Thesaurus of Geographic Names*® concepts for his place of birth, death, and related events.

Figure 7a. Linking Open Data cloud diagram 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/

Figure 7b. Linking Open Data cloud diagram [detail], 2014, by Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
References

2 Available at http://viaf.org/. The Getty Research Institute was one of the first institutions that is not a national library to contribute to the VIAF (contributing the ULAN dataset); as of this writing, OCLC, which maintains the VIAF, is analyzing the TGN data for inclusion in this massive international, multilingual vocabulary.

4 See http://www.europeana.eu/portal/record/90402/SK_A_2344.html.